Does the derivative of a P(V) eqn give the eqn for change in Pressure?

Click For Summary
Taking the derivative of a P(V) equation can provide insights into the rate of change of pressure with respect to volume. The interpretation of this derivative depends on the variable with respect to which differentiation is performed. In general, derivatives represent rates of change, but their meaning varies based on the context of the differentiation. The discussion emphasizes that understanding the relationship between pressure and volume is crucial for interpreting the results correctly. Ultimately, the derivative can indicate how pressure changes as volume changes.
JoeyBob
Messages
256
Reaction score
29
Homework Statement
N/A
Relevant Equations
N/A
I know the integral of a P(V) eqn gives an eqn for work.

I was wondering if taking the derivative of a P(V) eqn gives an eqn for change in pressure?
 
Physics news on Phys.org
JoeyBob said:
Homework Statement:: N/A
Relevant Equations:: N/A

I know the integral of a P(V) eqn gives an eqn for work.

I was wondering if taking the derivative of a P(V) eqn gives an eqn for change in pressure?
What is your definition of an "equation for change in pressure?"
 
Chestermiller said:
What is your definition of an "equation for change in pressure?"
Gives rate of change.

For instance, if you take the derivative of velocity, you get acceleration, which is the rate of change of velocity.
 
JoeyBob said:
For instance, if you take the derivative of velocity, you get acceleration, which is the rate of change of velocity.
No, the derivative of velocity with respect to time is acceleration. What you differentiate with respect to is important. For example, there are situations where velocity is given as a function of position. The derivative of such a velocity function is not acceleration.

Derivatives are rates of change with respect to the differentiation variable, but depending on what the differentiation variable is, the interpretation may vary.
 
  • Like
Likes Steve4Physics
Orodruin said:
No, the derivative of velocity with respect to time is acceleration. What you differentiate with respect to is important. For example, there are situations where velocity is given as a function of position. The derivative of such a velocity function is not acceleration.

Derivatives are rates of change with respect to the differentiation variable, but depending on what the differentiation variable is, the interpretation may vary.
So it would be rate of change with respect to volume?
 
Beams of electrons and protons move parallel to each other in the same direction. They ______. a. attract each other. b. repel each other. c. neither attract nor repel. d. the force of attraction or repulsion depends upon the speed of the beams. This is a previous-year-question of CBSE Board 2023. The answer key marks (b) as the right option. I want to know why we are ignoring Coulomb's force?
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
I treat this question as two cases of Doppler effect. (1) When the sound wave travels from bat to moth Speed of sound = 222 x 1.5 = 333 m/s Frequency received by moth: $$f_1=\frac{333+v}{333}\times 222$$ (2) When the sound wave is reflected from moth back to bat Frequency received by bat (moth as source and bat as observer): $$f_2=\frac{333}{333-v}\times f_1$$ $$230.3=\frac{333}{333-v}\times \frac{333+v}{333}\times 222$$ Solving this equation, I get ##v=6.1## m/s but the answer key is...