MHB Does the Limit of the Function Approach Zero as (x, y) Tends to (0,0)?

Click For Summary
The limit of the function as (x, y) approaches (0, 0) is evaluated using polar coordinates, transforming the expression into a form that simplifies the calculation. The limit is shown to be dependent on the angle θ, leading to two different conclusions based on the path taken to approach the origin. When the correct denominator is used, the limit resolves to zero regardless of the path, confirming that the limit exists and equals zero. Ultimately, the consensus is that the limit is indeed zero.
tmt1
Messages
230
Reaction score
0
I need to find

$$\lim_{{(x, y)}\to{(0,0)}} \frac{x^2 - y^2}{\sqrt{x^2 + y^2}}$$

If I plug in zero, I get an indeterminate form. How do I resolve the indeterminate form?
 
Physics news on Phys.org
Hi tmt,

First start with

$$\lim_{(x,y)\to (0,0)} \frac{x^2}{\sqrt{x^2 + y^2}}$$

Can you find this limit?
 
tmt said:
I need to find

$$\lim_{{(x, y)}\to{(0,0)}} \frac{x^2 - y^2}{\sqrt{x^2 + y^2}}$$

If I plug in zero, I get an indeterminate form. How do I resolve the indeterminate form?

I would convert to polars. With $\displaystyle \begin{align*} x = r\cos{ \left( \theta \right) } \end{align*}$ and $\displaystyle \begin{align*} y = r\sin{ \left( \theta \right) } \end{align*}$ this limit is

$\displaystyle \begin{align*} \lim_{\left( x, y \right) \to \left( 0, 0 \right) } \frac{x^2 - y^2}{\sqrt{x^2 + y^2}} &= \lim_{r \to 0} \frac{\left[ r\cos{ \left( \theta \right) } \right] ^2 - \left[ r\sin{ \left( \theta \right) } \right] ^2}{\sqrt{\left[ r\cos{ \left( \theta \right) } \right] ^2 + \left[ r\sin{ \left( \theta \right) } \right] ^2} } \\ &= \lim_{r \to 0} \frac{r^2\cos^2{\left( \theta \right) } - r^2\sin^2{ \left( \theta \right) } }{\sqrt{r^2 \cos^2{ \left( \theta \right) } + r^2 \sin^2{ \left( \theta \right) }} } \\ &= \lim_{r \to 0} \frac{r^2 \,\left[ \cos^2{ \left( \theta \right) } - \sin^2{ \left( \theta \right) } \right]}{\sqrt{r^2\,\left[ \cos^2{ \left( \theta \right) } + \sin^2{ \left( \theta \right) } \right] } } \\ &= \lim_{r \to 0} \frac{r^2\cos{ \left( 2\,\theta \right) } }{\sqrt{r^2}} \\ &= \lim_{r \to 0} \frac{r^2\cos{ \left( 2\,\theta \right) } }{r} \\ &= \lim_{r \to 0} \, r \cos{ \left( 2\,\theta \right) } \\ &= 0 \end{align*}$

As the value of this limit does not change depending on the path you take (so which angle you approach the origin from) that means the limit is 0.
 
Last edited:
Prove It said:
I would convert to polars. With $\displaystyle \begin{align*} x = r\cos{ \left( \theta \right) } \end{align*}$ and $\displaystyle \begin{align*} y = r\sin{ \left( \theta \right) } \end{align*}$ this limit is

$\displaystyle \begin{align*} \lim_{\left( x, y \right) \to \left( 0, 0 \right) } \frac{x^2 - y^2}{\sqrt{x^2 + y^2}} &= \lim_{r \to 0} \frac{\left[ r\cos{ \left( \theta \right) } \right] ^2 - \left[ r\sin{ \left( \theta \right) } \right] ^2}{\left[ r\cos{ \left( \theta \right) } \right] ^2 + \left[ r\sin{ \left( \theta \right) } \right] ^2 } \\ &= \lim_{r \to 0} \frac{r^2\cos^2{\left( \theta \right) } - r^2\sin^2{ \left( \theta \right) } }{r^2 \cos^2{ \left( \theta \right) } + r^2 \sin^2{ \left( \theta \right) } } \\ &= \lim_{r \to 0} \frac{r^2 \,\left[ \cos^2{ \left( \theta \right) } - \sin^2{ \left( \theta \right) } \right]}{r^2\,\left[ \cos^2{ \left( \theta \right) } + \sin^2{ \left( \theta \right) } \right] } \\ &= \lim_{r \to 0} \frac{r^2\cos{ \left( 2\,\theta \right) } }{r^2} \\ &= \lim_{r \to 0} \, \cos{ \left( 2\,\theta \right) } \\ &= \cos{ \left( 2\,\theta \right) } \end{align*}$

As the value of this limit changes depending on the path you take (so which angle you approach the origin from) that means the limit does not exist.

In the first step, the denominator should be $$\sqrt{[r\cos(\theta)]^2 + [r\sin(\theta)]^2}$$ so instead it comes down to computing $\lim\limits_{r\to 0} r\cos(2\theta)$.
 
Euge said:
In the first step, the denominator should be $$\sqrt{[r\cos(\theta)]^2 + [r\sin(\theta)]^2}$$ so instead it comes down to computing $\lim\limits_{r\to 0} r\cos(2\theta)$.

Oh whoops :P OK instead I showed that the limit is 0 hahaha. Will edit my post now (y)
 
Euge said:
In the first step, the denominator should be $$\sqrt{[r\cos(\theta)]^2 + [r\sin(\theta)]^2}$$ so instead it comes down to computing $\lim\limits_{r\to 0} r\cos(2\theta)$.

So it evaluates to 0?
 
tmt said:
So it evaluates to 0?

Yes, that's correct.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
603
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
20
Views
4K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 26 ·
Replies
26
Views
2K