MHB Does the Limit of the Function Approach Zero as (x, y) Tends to (0,0)?

tmt1
Messages
230
Reaction score
0
I need to find

$$\lim_{{(x, y)}\to{(0,0)}} \frac{x^2 - y^2}{\sqrt{x^2 + y^2}}$$

If I plug in zero, I get an indeterminate form. How do I resolve the indeterminate form?
 
Physics news on Phys.org
Hi tmt,

First start with

$$\lim_{(x,y)\to (0,0)} \frac{x^2}{\sqrt{x^2 + y^2}}$$

Can you find this limit?
 
tmt said:
I need to find

$$\lim_{{(x, y)}\to{(0,0)}} \frac{x^2 - y^2}{\sqrt{x^2 + y^2}}$$

If I plug in zero, I get an indeterminate form. How do I resolve the indeterminate form?

I would convert to polars. With $\displaystyle \begin{align*} x = r\cos{ \left( \theta \right) } \end{align*}$ and $\displaystyle \begin{align*} y = r\sin{ \left( \theta \right) } \end{align*}$ this limit is

$\displaystyle \begin{align*} \lim_{\left( x, y \right) \to \left( 0, 0 \right) } \frac{x^2 - y^2}{\sqrt{x^2 + y^2}} &= \lim_{r \to 0} \frac{\left[ r\cos{ \left( \theta \right) } \right] ^2 - \left[ r\sin{ \left( \theta \right) } \right] ^2}{\sqrt{\left[ r\cos{ \left( \theta \right) } \right] ^2 + \left[ r\sin{ \left( \theta \right) } \right] ^2} } \\ &= \lim_{r \to 0} \frac{r^2\cos^2{\left( \theta \right) } - r^2\sin^2{ \left( \theta \right) } }{\sqrt{r^2 \cos^2{ \left( \theta \right) } + r^2 \sin^2{ \left( \theta \right) }} } \\ &= \lim_{r \to 0} \frac{r^2 \,\left[ \cos^2{ \left( \theta \right) } - \sin^2{ \left( \theta \right) } \right]}{\sqrt{r^2\,\left[ \cos^2{ \left( \theta \right) } + \sin^2{ \left( \theta \right) } \right] } } \\ &= \lim_{r \to 0} \frac{r^2\cos{ \left( 2\,\theta \right) } }{\sqrt{r^2}} \\ &= \lim_{r \to 0} \frac{r^2\cos{ \left( 2\,\theta \right) } }{r} \\ &= \lim_{r \to 0} \, r \cos{ \left( 2\,\theta \right) } \\ &= 0 \end{align*}$

As the value of this limit does not change depending on the path you take (so which angle you approach the origin from) that means the limit is 0.
 
Last edited:
Prove It said:
I would convert to polars. With $\displaystyle \begin{align*} x = r\cos{ \left( \theta \right) } \end{align*}$ and $\displaystyle \begin{align*} y = r\sin{ \left( \theta \right) } \end{align*}$ this limit is

$\displaystyle \begin{align*} \lim_{\left( x, y \right) \to \left( 0, 0 \right) } \frac{x^2 - y^2}{\sqrt{x^2 + y^2}} &= \lim_{r \to 0} \frac{\left[ r\cos{ \left( \theta \right) } \right] ^2 - \left[ r\sin{ \left( \theta \right) } \right] ^2}{\left[ r\cos{ \left( \theta \right) } \right] ^2 + \left[ r\sin{ \left( \theta \right) } \right] ^2 } \\ &= \lim_{r \to 0} \frac{r^2\cos^2{\left( \theta \right) } - r^2\sin^2{ \left( \theta \right) } }{r^2 \cos^2{ \left( \theta \right) } + r^2 \sin^2{ \left( \theta \right) } } \\ &= \lim_{r \to 0} \frac{r^2 \,\left[ \cos^2{ \left( \theta \right) } - \sin^2{ \left( \theta \right) } \right]}{r^2\,\left[ \cos^2{ \left( \theta \right) } + \sin^2{ \left( \theta \right) } \right] } \\ &= \lim_{r \to 0} \frac{r^2\cos{ \left( 2\,\theta \right) } }{r^2} \\ &= \lim_{r \to 0} \, \cos{ \left( 2\,\theta \right) } \\ &= \cos{ \left( 2\,\theta \right) } \end{align*}$

As the value of this limit changes depending on the path you take (so which angle you approach the origin from) that means the limit does not exist.

In the first step, the denominator should be $$\sqrt{[r\cos(\theta)]^2 + [r\sin(\theta)]^2}$$ so instead it comes down to computing $\lim\limits_{r\to 0} r\cos(2\theta)$.
 
Euge said:
In the first step, the denominator should be $$\sqrt{[r\cos(\theta)]^2 + [r\sin(\theta)]^2}$$ so instead it comes down to computing $\lim\limits_{r\to 0} r\cos(2\theta)$.

Oh whoops :P OK instead I showed that the limit is 0 hahaha. Will edit my post now (y)
 
Euge said:
In the first step, the denominator should be $$\sqrt{[r\cos(\theta)]^2 + [r\sin(\theta)]^2}$$ so instead it comes down to computing $\lim\limits_{r\to 0} r\cos(2\theta)$.

So it evaluates to 0?
 
tmt said:
So it evaluates to 0?

Yes, that's correct.
 

Similar threads

Replies
2
Views
2K
Replies
3
Views
2K
Replies
8
Views
248
Replies
4
Views
1K
Replies
3
Views
2K
Replies
4
Views
3K
Replies
26
Views
2K
Back
Top