Does the Limit of the Function Approach Zero as (x, y) Tends to (0,0)?

Click For Summary
SUMMARY

The limit of the function $$\lim_{{(x, y)}\to{(0,0)}} \frac{x^2 - y^2}{\sqrt{x^2 + y^2}}$$ approaches zero as (x, y) tends to (0, 0). This conclusion is reached by converting to polar coordinates, where the limit simplifies to $$\lim_{r \to 0} r \cos(2\theta)$$. The limit evaluates to zero regardless of the angle of approach, confirming that the limit exists and is equal to zero. The discussion also highlights an error in the initial setup of the denominator, which was corrected during the analysis.

PREREQUISITES
  • Understanding of limits in multivariable calculus
  • Familiarity with polar coordinates transformation
  • Knowledge of trigonometric identities, specifically cosine double angle
  • Ability to manipulate indeterminate forms in calculus
NEXT STEPS
  • Study the concept of limits in multivariable calculus
  • Learn about polar coordinates and their applications in limits
  • Explore trigonometric identities and their use in calculus
  • Practice resolving indeterminate forms using various techniques
USEFUL FOR

Students and educators in calculus, mathematicians analyzing multivariable limits, and anyone interested in understanding the behavior of functions as they approach critical points in a two-dimensional space.

tmt1
Messages
230
Reaction score
0
I need to find

$$\lim_{{(x, y)}\to{(0,0)}} \frac{x^2 - y^2}{\sqrt{x^2 + y^2}}$$

If I plug in zero, I get an indeterminate form. How do I resolve the indeterminate form?
 
Physics news on Phys.org
Hi tmt,

First start with

$$\lim_{(x,y)\to (0,0)} \frac{x^2}{\sqrt{x^2 + y^2}}$$

Can you find this limit?
 
tmt said:
I need to find

$$\lim_{{(x, y)}\to{(0,0)}} \frac{x^2 - y^2}{\sqrt{x^2 + y^2}}$$

If I plug in zero, I get an indeterminate form. How do I resolve the indeterminate form?

I would convert to polars. With $\displaystyle \begin{align*} x = r\cos{ \left( \theta \right) } \end{align*}$ and $\displaystyle \begin{align*} y = r\sin{ \left( \theta \right) } \end{align*}$ this limit is

$\displaystyle \begin{align*} \lim_{\left( x, y \right) \to \left( 0, 0 \right) } \frac{x^2 - y^2}{\sqrt{x^2 + y^2}} &= \lim_{r \to 0} \frac{\left[ r\cos{ \left( \theta \right) } \right] ^2 - \left[ r\sin{ \left( \theta \right) } \right] ^2}{\sqrt{\left[ r\cos{ \left( \theta \right) } \right] ^2 + \left[ r\sin{ \left( \theta \right) } \right] ^2} } \\ &= \lim_{r \to 0} \frac{r^2\cos^2{\left( \theta \right) } - r^2\sin^2{ \left( \theta \right) } }{\sqrt{r^2 \cos^2{ \left( \theta \right) } + r^2 \sin^2{ \left( \theta \right) }} } \\ &= \lim_{r \to 0} \frac{r^2 \,\left[ \cos^2{ \left( \theta \right) } - \sin^2{ \left( \theta \right) } \right]}{\sqrt{r^2\,\left[ \cos^2{ \left( \theta \right) } + \sin^2{ \left( \theta \right) } \right] } } \\ &= \lim_{r \to 0} \frac{r^2\cos{ \left( 2\,\theta \right) } }{\sqrt{r^2}} \\ &= \lim_{r \to 0} \frac{r^2\cos{ \left( 2\,\theta \right) } }{r} \\ &= \lim_{r \to 0} \, r \cos{ \left( 2\,\theta \right) } \\ &= 0 \end{align*}$

As the value of this limit does not change depending on the path you take (so which angle you approach the origin from) that means the limit is 0.
 
Last edited:
Prove It said:
I would convert to polars. With $\displaystyle \begin{align*} x = r\cos{ \left( \theta \right) } \end{align*}$ and $\displaystyle \begin{align*} y = r\sin{ \left( \theta \right) } \end{align*}$ this limit is

$\displaystyle \begin{align*} \lim_{\left( x, y \right) \to \left( 0, 0 \right) } \frac{x^2 - y^2}{\sqrt{x^2 + y^2}} &= \lim_{r \to 0} \frac{\left[ r\cos{ \left( \theta \right) } \right] ^2 - \left[ r\sin{ \left( \theta \right) } \right] ^2}{\left[ r\cos{ \left( \theta \right) } \right] ^2 + \left[ r\sin{ \left( \theta \right) } \right] ^2 } \\ &= \lim_{r \to 0} \frac{r^2\cos^2{\left( \theta \right) } - r^2\sin^2{ \left( \theta \right) } }{r^2 \cos^2{ \left( \theta \right) } + r^2 \sin^2{ \left( \theta \right) } } \\ &= \lim_{r \to 0} \frac{r^2 \,\left[ \cos^2{ \left( \theta \right) } - \sin^2{ \left( \theta \right) } \right]}{r^2\,\left[ \cos^2{ \left( \theta \right) } + \sin^2{ \left( \theta \right) } \right] } \\ &= \lim_{r \to 0} \frac{r^2\cos{ \left( 2\,\theta \right) } }{r^2} \\ &= \lim_{r \to 0} \, \cos{ \left( 2\,\theta \right) } \\ &= \cos{ \left( 2\,\theta \right) } \end{align*}$

As the value of this limit changes depending on the path you take (so which angle you approach the origin from) that means the limit does not exist.

In the first step, the denominator should be $$\sqrt{[r\cos(\theta)]^2 + [r\sin(\theta)]^2}$$ so instead it comes down to computing $\lim\limits_{r\to 0} r\cos(2\theta)$.
 
Euge said:
In the first step, the denominator should be $$\sqrt{[r\cos(\theta)]^2 + [r\sin(\theta)]^2}$$ so instead it comes down to computing $\lim\limits_{r\to 0} r\cos(2\theta)$.

Oh whoops :P OK instead I showed that the limit is 0 hahaha. Will edit my post now (y)
 
Euge said:
In the first step, the denominator should be $$\sqrt{[r\cos(\theta)]^2 + [r\sin(\theta)]^2}$$ so instead it comes down to computing $\lim\limits_{r\to 0} r\cos(2\theta)$.

So it evaluates to 0?
 
tmt said:
So it evaluates to 0?

Yes, that's correct.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
908
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 9 ·
Replies
9
Views
11K
Replies
20
Views
4K