Does the Limit of the Function Approach Zero as (x, y) Tends to (0,0)?

Click For Summary

Discussion Overview

The discussion revolves around the limit of the function $$\lim_{{(x, y)}\to{(0,0)}} \frac{x^2 - y^2}{\sqrt{x^2 + y^2}}$$ as the point (x, y) approaches (0, 0). Participants explore various methods to evaluate this limit, including direct substitution, polar coordinates, and the implications of different paths of approach.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants note that direct substitution leads to an indeterminate form and seek methods to resolve it.
  • One participant suggests evaluating the limit using polar coordinates, expressing the limit in terms of r and θ.
  • Another participant calculates the limit in polar coordinates and concludes it approaches 0, arguing that the value does not depend on the path taken.
  • Conversely, another participant calculates the limit using polar coordinates and finds that it depends on θ, suggesting that the limit does not exist.
  • Several participants engage in correcting each other's mathematical steps, particularly regarding the denominator in the polar coordinate transformation.
  • One participant humorously acknowledges a mistake in their earlier calculation and suggests that the limit evaluates to 0.

Areas of Agreement / Disagreement

Participants express conflicting views on whether the limit exists or evaluates to 0, indicating that the discussion remains unresolved with multiple competing interpretations.

Contextual Notes

Participants highlight the importance of the path taken towards the origin in determining the limit, with some calculations leading to different conclusions based on the angle of approach.

tmt1
Messages
230
Reaction score
0
I need to find

$$\lim_{{(x, y)}\to{(0,0)}} \frac{x^2 - y^2}{\sqrt{x^2 + y^2}}$$

If I plug in zero, I get an indeterminate form. How do I resolve the indeterminate form?
 
Physics news on Phys.org
Hi tmt,

First start with

$$\lim_{(x,y)\to (0,0)} \frac{x^2}{\sqrt{x^2 + y^2}}$$

Can you find this limit?
 
tmt said:
I need to find

$$\lim_{{(x, y)}\to{(0,0)}} \frac{x^2 - y^2}{\sqrt{x^2 + y^2}}$$

If I plug in zero, I get an indeterminate form. How do I resolve the indeterminate form?

I would convert to polars. With $\displaystyle \begin{align*} x = r\cos{ \left( \theta \right) } \end{align*}$ and $\displaystyle \begin{align*} y = r\sin{ \left( \theta \right) } \end{align*}$ this limit is

$\displaystyle \begin{align*} \lim_{\left( x, y \right) \to \left( 0, 0 \right) } \frac{x^2 - y^2}{\sqrt{x^2 + y^2}} &= \lim_{r \to 0} \frac{\left[ r\cos{ \left( \theta \right) } \right] ^2 - \left[ r\sin{ \left( \theta \right) } \right] ^2}{\sqrt{\left[ r\cos{ \left( \theta \right) } \right] ^2 + \left[ r\sin{ \left( \theta \right) } \right] ^2} } \\ &= \lim_{r \to 0} \frac{r^2\cos^2{\left( \theta \right) } - r^2\sin^2{ \left( \theta \right) } }{\sqrt{r^2 \cos^2{ \left( \theta \right) } + r^2 \sin^2{ \left( \theta \right) }} } \\ &= \lim_{r \to 0} \frac{r^2 \,\left[ \cos^2{ \left( \theta \right) } - \sin^2{ \left( \theta \right) } \right]}{\sqrt{r^2\,\left[ \cos^2{ \left( \theta \right) } + \sin^2{ \left( \theta \right) } \right] } } \\ &= \lim_{r \to 0} \frac{r^2\cos{ \left( 2\,\theta \right) } }{\sqrt{r^2}} \\ &= \lim_{r \to 0} \frac{r^2\cos{ \left( 2\,\theta \right) } }{r} \\ &= \lim_{r \to 0} \, r \cos{ \left( 2\,\theta \right) } \\ &= 0 \end{align*}$

As the value of this limit does not change depending on the path you take (so which angle you approach the origin from) that means the limit is 0.
 
Last edited:
Prove It said:
I would convert to polars. With $\displaystyle \begin{align*} x = r\cos{ \left( \theta \right) } \end{align*}$ and $\displaystyle \begin{align*} y = r\sin{ \left( \theta \right) } \end{align*}$ this limit is

$\displaystyle \begin{align*} \lim_{\left( x, y \right) \to \left( 0, 0 \right) } \frac{x^2 - y^2}{\sqrt{x^2 + y^2}} &= \lim_{r \to 0} \frac{\left[ r\cos{ \left( \theta \right) } \right] ^2 - \left[ r\sin{ \left( \theta \right) } \right] ^2}{\left[ r\cos{ \left( \theta \right) } \right] ^2 + \left[ r\sin{ \left( \theta \right) } \right] ^2 } \\ &= \lim_{r \to 0} \frac{r^2\cos^2{\left( \theta \right) } - r^2\sin^2{ \left( \theta \right) } }{r^2 \cos^2{ \left( \theta \right) } + r^2 \sin^2{ \left( \theta \right) } } \\ &= \lim_{r \to 0} \frac{r^2 \,\left[ \cos^2{ \left( \theta \right) } - \sin^2{ \left( \theta \right) } \right]}{r^2\,\left[ \cos^2{ \left( \theta \right) } + \sin^2{ \left( \theta \right) } \right] } \\ &= \lim_{r \to 0} \frac{r^2\cos{ \left( 2\,\theta \right) } }{r^2} \\ &= \lim_{r \to 0} \, \cos{ \left( 2\,\theta \right) } \\ &= \cos{ \left( 2\,\theta \right) } \end{align*}$

As the value of this limit changes depending on the path you take (so which angle you approach the origin from) that means the limit does not exist.

In the first step, the denominator should be $$\sqrt{[r\cos(\theta)]^2 + [r\sin(\theta)]^2}$$ so instead it comes down to computing $\lim\limits_{r\to 0} r\cos(2\theta)$.
 
Euge said:
In the first step, the denominator should be $$\sqrt{[r\cos(\theta)]^2 + [r\sin(\theta)]^2}$$ so instead it comes down to computing $\lim\limits_{r\to 0} r\cos(2\theta)$.

Oh whoops :P OK instead I showed that the limit is 0 hahaha. Will edit my post now (y)
 
Euge said:
In the first step, the denominator should be $$\sqrt{[r\cos(\theta)]^2 + [r\sin(\theta)]^2}$$ so instead it comes down to computing $\lim\limits_{r\to 0} r\cos(2\theta)$.

So it evaluates to 0?
 
tmt said:
So it evaluates to 0?

Yes, that's correct.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 9 ·
Replies
9
Views
11K
Replies
20
Views
4K