bob012345
Gold Member
- 2,290
- 1,015
bob012345 said:This brings up a related question. I tried applying the work energy theorem in the relativistic regime. I have no problems with the relativistic kinetic energy difference but the integration force over distance got unwieldy. Then I realized than no books I have seen have relativistic kinematics covered. I don't mean Lorentz transformations, I mean in one frame where the acceleration changes for a fixed force because the mass increases. I couldn't match the integrated work with the change in relativistic energy.
Newton's Second Law is relativistically modified as F= gamma^3 ma where m is rest mass. This can be derived from the relativistic form of momentum. A few proper substitutions and integrate over x equals mc^2( gamma2- gamma1). All is well.