MHB Does the Norm of a Linear Integral Operator Equal Its Spectral Radius?

sarrah1
Messages
55
Reaction score
0
Hello

A simple question.
I have a linear integral operator (self-adjoint)

$$(Kx)(t)=\int_{a}^{b} \, k(t,s)\,x(s)\,ds$$

where $k$ is the kernel. Can I say that its norm (I believe in $L^2$) equals the spectral radius of $K?$

Thanks!
Sarah
 
Physics news on Phys.org
No, the norm of an integral operator is not necessarily equal to its spectral radius. The norm of an integral operator is given by the supremum of its operator norm, which is defined as $\sup_{x\neq 0}\frac{||Kx||}{||x||}$. The spectral radius on the other hand is the largest eigenvalue of the operator.
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.
Back
Top