MHB Does the permutation group S_8 contain elements of order 14?

Click For Summary
The permutation group S_8 does not contain elements of order 14. The only possible disjoint cycle decompositions for a permutation of order 14 would be a combination of a 2-cycle and a 7-cycle, but this is impossible as their total exceeds 8. Additionally, a 14-cycle cannot exist in S_8 since 14 is greater than 8. The discussion highlights that while S_8 can have elements of order 12, it cannot accommodate elements of order 14. Thus, the conclusion is that S_8 lacks elements of order 14.
i_a_n
Messages
78
Reaction score
0
Does the permutation group $S_8$ contain elements of order $14$?My answer: If $\sigma =\alpha \beta$
where $\alpha$ and $\beta$ are disjoint cycles, then
$|\sigma|=lcm(|\alpha|, |\beta|)$ .
Therefore the only possible disjoint cycle decompositions for a permutation $\sigma \in S_8$ with $|\sigma| =14$ is $(7,2)$. Since $7+2\neq 8$ so there is no element of order 14 in $S_8$.

Is my answer right?
 
Last edited:
Physics news on Phys.org
Re: Does the permutation group $S_8$ contain elements of order 14 and the number of those element?

ianchenmu said:
Does the permutation group $S_8$ contain elements of order $14$?My answer: If $\sigma =\alpha \beta$
where $\alpha$ and $\beta$ are disjoint cycles, then
$|\sigma|=lcm(|\alpha|, |\beta|)$ .
Therefore the only possible disjoint cycle decompositions for a permutation $\sigma \in S_8$ with $|\sigma| =14$ is $(7,2)$. Since $7+2\neq 8$ so there is no element of order 14 in $S_8$.

Is my answer right?I feel I've only considered the possibility that
[FONT=MathJax_Math]σ is product of two disjoint cycles but I don't know how to count the number of elements of order 14 in a single cycle. So what's the right answer?


Your answer is right... with a couple of tweaks.

Since 14 has the prime factorization $2 \cdot 7$ there are only two permutation types possible for an element of order 14.
Either it must be a 14-cycle, or it has to be the combination of a 2-cycle and a disjoint 7-cycle.

It is not so much that $7+2\neq 8$, but it is not possible because $7+2 > 8$.
And of course 14 is also greater than 8.
To clarify, $S_8$ does have an element of order 12: a 3-cycle combined with a disjoint 4-cycle.
This works because $3+4 \le 8$ and because 3 and 4 are relatively prime.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K