MHB Does the permutation group S_8 contain elements of order 14?

i_a_n
Messages
78
Reaction score
0
Does the permutation group $S_8$ contain elements of order $14$?My answer: If $\sigma =\alpha \beta$
where $\alpha$ and $\beta$ are disjoint cycles, then
$|\sigma|=lcm(|\alpha|, |\beta|)$ .
Therefore the only possible disjoint cycle decompositions for a permutation $\sigma \in S_8$ with $|\sigma| =14$ is $(7,2)$. Since $7+2\neq 8$ so there is no element of order 14 in $S_8$.

Is my answer right?
 
Last edited:
Physics news on Phys.org
Re: Does the permutation group $S_8$ contain elements of order 14 and the number of those element?

ianchenmu said:
Does the permutation group $S_8$ contain elements of order $14$?My answer: If $\sigma =\alpha \beta$
where $\alpha$ and $\beta$ are disjoint cycles, then
$|\sigma|=lcm(|\alpha|, |\beta|)$ .
Therefore the only possible disjoint cycle decompositions for a permutation $\sigma \in S_8$ with $|\sigma| =14$ is $(7,2)$. Since $7+2\neq 8$ so there is no element of order 14 in $S_8$.

Is my answer right?I feel I've only considered the possibility that
[FONT=MathJax_Math]σ is product of two disjoint cycles but I don't know how to count the number of elements of order 14 in a single cycle. So what's the right answer?


Your answer is right... with a couple of tweaks.

Since 14 has the prime factorization $2 \cdot 7$ there are only two permutation types possible for an element of order 14.
Either it must be a 14-cycle, or it has to be the combination of a 2-cycle and a disjoint 7-cycle.

It is not so much that $7+2\neq 8$, but it is not possible because $7+2 > 8$.
And of course 14 is also greater than 8.
To clarify, $S_8$ does have an element of order 12: a 3-cycle combined with a disjoint 4-cycle.
This works because $3+4 \le 8$ and because 3 and 4 are relatively prime.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top