I Does the Topology of AdS4 Affect Global Hyperbolicity?

  • I
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Hyperbolic
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Is ##\mathrm{AdS_4}## globally hyperbolic?$$g = -\left(1+ \dfrac{r^2}{l^2} \right)dt^2 + \dfrac{dr^2}{1+ \dfrac{r^2}{l^2}}+ r^2d\Omega^2$$Letting ##r = l \tan \chi## then defining ##\tilde{g} = g \cos^2 \chi##\begin{align*}
g &= \sec^2 \chi (-dt^2 + l^2 d\chi^2) + l^2 \tan^2 \chi d\Omega^2 \\ \\

\tilde{g} &= -dt^2 + l^2 (d\chi^2 + \sin^2 \chi d\Omega^2) \\
\tilde{g} &= -dt^2 + l^2 d\omega^2\end{align*}the topology is ##\mathbb{R} \times S^3##. Does global hyperbolicity of ##\tilde{g}## ##\iff## global hyperbolicity of ##g##?
 
Last edited:
Physics news on Phys.org
I don't know anything about string theory, but isn't that coordinate system a mapping to ##\mathbb{R^2} \times S^2## not ##\mathbb{R^1} \times S^3##? It looks like only two angles and a radius to me (plus time). Am I missing something?

If I'm missing something obvious, ignore me. I just chimed in because the thread went unanswered.
 
  • Like
Likes ergospherical
My thinking was that ##l^2(d\chi^2 + \sin^2 \chi d\Omega^2)## is the round metric on a ##3##-sphere of radius ##l## (or in fact since ##\chi \in \bigg{[} 0, \dfrac{\pi}{2} \bigg{)}## it'll only be half of the 3-sphere...)
 
Last edited:
Just to make sure we're talking about the same thing, when you say ##S^3##, you mean a surface embedded in ##\mathbb{R}^4## given by ##x^2 + y^2 + z^2 + w^2 = 1##, right? As in, the sphere that is diffeomorphic to the special orthogonal group ##\mathrm{SO}(3)## and the special unitary group ##\mathrm{SU}(2)##, right?
 
  • Like
Likes ergospherical
Yeah, and ##(\chi, \theta, \varphi)## would be the hyperspherical coordinates on the 3-sphere of radius ##l##.
 
I'm a dope and I only just caught that ##d\Omega^2## was a total solid angle over ##S^2##. Now I'm on board with your claim about the topology. Sorry for derailing ya
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...

Similar threads

Replies
5
Views
2K
Replies
4
Views
1K
Replies
13
Views
2K
Replies
6
Views
2K
Replies
11
Views
2K
Replies
5
Views
1K
Back
Top