I Does the Topology of AdS4 Affect Global Hyperbolicity?

  • I
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Hyperbolic
Click For Summary
The discussion centers on the global hyperbolicity of AdS4, specifically questioning whether the global hyperbolicity of the metric ##\tilde{g}## implies that of ##g##. The transformation of coordinates suggests a topology of ##\mathbb{R} \times S^3##, but there is confusion regarding the mapping to ##\mathbb{R^2} \times S^2##. Clarification is sought on the nature of the 3-sphere and its relation to the metrics involved. The conversation highlights the importance of understanding the geometric implications of these coordinate transformations. Overall, the thread addresses complex concepts in the context of string theory and global hyperbolicity.
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
Is ##\mathrm{AdS_4}## globally hyperbolic?$$g = -\left(1+ \dfrac{r^2}{l^2} \right)dt^2 + \dfrac{dr^2}{1+ \dfrac{r^2}{l^2}}+ r^2d\Omega^2$$Letting ##r = l \tan \chi## then defining ##\tilde{g} = g \cos^2 \chi##\begin{align*}
g &= \sec^2 \chi (-dt^2 + l^2 d\chi^2) + l^2 \tan^2 \chi d\Omega^2 \\ \\

\tilde{g} &= -dt^2 + l^2 (d\chi^2 + \sin^2 \chi d\Omega^2) \\
\tilde{g} &= -dt^2 + l^2 d\omega^2\end{align*}the topology is ##\mathbb{R} \times S^3##. Does global hyperbolicity of ##\tilde{g}## ##\iff## global hyperbolicity of ##g##?
 
Last edited:
Physics news on Phys.org
I don't know anything about string theory, but isn't that coordinate system a mapping to ##\mathbb{R^2} \times S^2## not ##\mathbb{R^1} \times S^3##? It looks like only two angles and a radius to me (plus time). Am I missing something?

If I'm missing something obvious, ignore me. I just chimed in because the thread went unanswered.
 
  • Like
Likes ergospherical
My thinking was that ##l^2(d\chi^2 + \sin^2 \chi d\Omega^2)## is the round metric on a ##3##-sphere of radius ##l## (or in fact since ##\chi \in \bigg{[} 0, \dfrac{\pi}{2} \bigg{)}## it'll only be half of the 3-sphere...)
 
Last edited:
Just to make sure we're talking about the same thing, when you say ##S^3##, you mean a surface embedded in ##\mathbb{R}^4## given by ##x^2 + y^2 + z^2 + w^2 = 1##, right? As in, the sphere that is diffeomorphic to the special orthogonal group ##\mathrm{SO}(3)## and the special unitary group ##\mathrm{SU}(2)##, right?
 
  • Like
Likes ergospherical
Yeah, and ##(\chi, \theta, \varphi)## would be the hyperspherical coordinates on the 3-sphere of radius ##l##.
 
I'm a dope and I only just caught that ##d\Omega^2## was a total solid angle over ##S^2##. Now I'm on board with your claim about the topology. Sorry for derailing ya
 
In Birkhoff’s theorem, doesn’t assuming we can use r (defined as circumference divided by ## 2 \pi ## for any given sphere) as a coordinate across the spacetime implicitly assume that the spheres must always be getting bigger in some specific direction? Is there a version of the proof that doesn’t have this limitation? I’m thinking about if we made a similar move on 2-dimensional manifolds that ought to exhibit infinite order rotational symmetry. A cylinder would clearly fit, but if we...

Similar threads

Replies
5
Views
3K
Replies
4
Views
1K
Replies
13
Views
2K
Replies
6
Views
2K
Replies
11
Views
2K
Replies
5
Views
1K