Does this help solve the Riemann Hypothesis?

Click For Summary

Discussion Overview

The discussion revolves around a proposed equation related to the Riemann Hypothesis, specifically examining the implications of an inverse zeta function and its potential to aid in solving the hypothesis. The scope includes theoretical exploration and mathematical reasoning.

Discussion Character

  • Exploratory, Technical explanation, Debate/contested, Mathematical reasoning

Main Points Raised

  • One participant presents an equation involving the zeta function and questions whether it could help solve the Riemann Hypothesis or merely yield the real part of s.
  • Another participant argues against the existence of an inverse zeta function, stating that the zeros of the zeta function form an infinite set, which complicates the notion of a single-valued inverse.
  • A third participant expresses skepticism about the initial claim, suggesting that the phrasing of the equation raises concerns about its validity.
  • Further discussion highlights confusion regarding the proposed equation, specifically questioning how it can solve for the real part of s when it appears on both sides of the equation.
  • A later reply acknowledges the confusion regarding the equation's formulation.

Areas of Agreement / Disagreement

Participants express disagreement regarding the validity of the proposed approach and the existence of an inverse zeta function. The discussion remains unresolved, with multiple competing views on the implications of the initial claim.

Contextual Notes

Participants note potential issues with the formulation of the equation and the implications of the zeta function's properties, but these concerns remain unaddressed in terms of resolution.

MevsEinstein
Messages
124
Reaction score
36
TL;DR
I created an equation with the real part of the input of the zeta function on the RHS and a complex expression on the LHS
Hello PF!

If ##\Re (s)## is the real part of ##s## and ##\Im (s)## is the imaginary part, then t is very easy to prove that $$\zeta (s) = \zeta ( \Re (s) ) \zeta ( \Im (s)i) - \displaystyle\sum_{n=1}^\infty \frac{1}{n^{\Re (s)}} [\displaystyle\sum_{k \in S, \mathbb{Z} \S = n} \frac{1}{k^{\Im(s)i}}]$$ Since the second term simplifies to ## \zeta ( \Re (s) ) \zeta ( \Im (s)i) - \zeta (s)##. (##\mathbb{Z} \S = n## is actually ##\mathbb{Z}## \##S
## = ##n##). Now, solving for ##\Re (s)## gets us $$\zeta^{-1} ({\frac{\zeta (s) + \displaystyle\sum_{n=1}^\infty \frac{1}{n^{\Re (s)}}[ \displaystyle\sum_{k \in S, \mathbb{Z} \S = n} \frac{1}{k^{\Im (s)i}}]}{\zeta (\Im (s)i)}}) = \Re (s)$$ Setting ##\zeta (s)## to zero gives us the equation we were looking for. Now I am thinking, could this help solve the Riemann hypothesis? Or will this just spit out ##\Re (s)##? I mean, the inverse zeta function is very complicated (page 43 of https://arxiv.org/pdf/2106.06915.pdf ), so it's hard to tell.
 
Last edited:
  • Skeptical
Likes   Reactions: weirdoguy and malawi_glenn
Physics news on Phys.org
The short answer is a simple no.

And there is no such thing as an inverse zeta-function. Let us assume for a second that there is ##\zeta^{-1}.## Then ##\zeta(s)=0## means ##s=\zeta^{-1}(\zeta(s))=\zeta^{-1}(0)##. However, there are infinitely many zeros of the zeta-function. How could that be just a single value ##\zeta^{-1}(0)?## The pre-image ##\zeta^{-1}(\{0\})## is an entire, infinite set. No way to make this a function.

You have to be careful with the zeta-function. E.g., ##\zeta(-1)=-\dfrac{1}{12}## but ##1+2+3+\ldots \neq -\dfrac{1}{12}.## I am not sure what you are doing here so I cannot comment your equations. If you want to even understand the Riemann hypothesis then you should study
https://www.physicsforums.com/insig...thesis-and-ramanujans-sum/#toggle-id-1-closed
 
  • Like
  • Informative
Likes   Reactions: nuuskur, berkeman, malawi_glenn and 1 other person
To be fair, your first sentence beginning with
I created an equation..
is already alarming and strongly advises to ignore what follows. :frown:
 
MevsEinstein said:
Now, solving for ##\Re (s)## gets us $$\zeta^{-1} ({\frac{\zeta (s) + \displaystyle\sum_{n=1}^\infty \frac{1}{n^{\Re (s)}}[ \displaystyle\sum_{k \in S, \mathbb{Z} \S = n} \frac{1}{k^{\Im (s)i}}]}{\zeta (\Im (s)i)}}) = \Re (s)$$
Ignoring all other possible problems, how is this solving for ##\Re (s)##? It appears on both sides!
 
martinbn said:
how is this solving for ##\Re (s)##? It appears on both sides!
Oops, sorry about that.
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K