I Double Check Normalization Condition

Click For Summary
The discussion focuses on the normalization condition for the state defined as ##\ket{\Psi} = \sum_{1 \leq n_{1} \leq n_{2} \leq N} a(n_{1},n_{2})\ket{n_{1},n_{2}}##, where the coefficients ##|a(n_{1},n_{2})|## are proportional to ##\cosh[(x-1/2)N\ln N]##. It is claimed that coefficients with ##n_{2}-n_{1} > 1## approach zero as ##N\rightarrow\infty##, raising concerns about normalization. The proposed normalization condition is $$C^{2}\frac{1}{4}\sum_{n_{1},n_{2}}^{N} |a(n_{1},n_{2})|^2 = 1$$, with the factor of ##1/4## accounting for the ordering in the sum. After further analysis, it is confirmed that this normalization condition is indeed correct. The discussion highlights the importance of proper normalization to avoid divergence in the coefficients.
thatboi
Messages
130
Reaction score
20
Consider the state ##\ket{\Psi} = \sum_{1 \leq n_{1} \leq n_{2} \leq N} a(n_{1},n_{2})\ket{n_{1},n_{2}}## and suppose $$|a(n_{1},n_{2})| \propto \cosh[(x-1/2)N\ln N]$$ where ##0<x=(n_{1}-n_{2})/N<1##. The claim is that all ##a(n_{1},n_{2})## with ##n_{2}-n_{1} > 1## go to ##0## as ##N\rightarrow\infty##. Clearly we need some kind of normalization constant, otherwise the cosh function should just blow up. So is the right normalization condition then $$C^{2}\frac{1}{4}\sum_{n_{1},n_{2}}^{N} |a(n_{1},n_{2})|^2 = 1$$ where ##C## is our normalization constant (I introduced the ##1/4## because I removed the ordering in the sum)? Because I tried doing the calculation and making the plot but I still cannot see this exponential decay.
 
Physics news on Phys.org
Ok I took another crack at the problem and this is indeed the correct normalization condition.
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...

Similar threads