I Double Check Normalization Condition

thatboi
Messages
130
Reaction score
20
Consider the state ##\ket{\Psi} = \sum_{1 \leq n_{1} \leq n_{2} \leq N} a(n_{1},n_{2})\ket{n_{1},n_{2}}## and suppose $$|a(n_{1},n_{2})| \propto \cosh[(x-1/2)N\ln N]$$ where ##0<x=(n_{1}-n_{2})/N<1##. The claim is that all ##a(n_{1},n_{2})## with ##n_{2}-n_{1} > 1## go to ##0## as ##N\rightarrow\infty##. Clearly we need some kind of normalization constant, otherwise the cosh function should just blow up. So is the right normalization condition then $$C^{2}\frac{1}{4}\sum_{n_{1},n_{2}}^{N} |a(n_{1},n_{2})|^2 = 1$$ where ##C## is our normalization constant (I introduced the ##1/4## because I removed the ordering in the sum)? Because I tried doing the calculation and making the plot but I still cannot see this exponential decay.
 
Physics news on Phys.org
Ok I took another crack at the problem and this is indeed the correct normalization condition.
 
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...

Similar threads

Back
Top