Petrus
- 702
- 0
Hello MHB,
$$\int_0^1\int_0^1 \frac{xy}{\sqrt{x^2+y^2+1}} dxdy$$
I start with subsitate $$u=x <=> du=dx$$ and $$du= \frac{y}{\sqrt{x^2+y^2+1}} <=>u=y\ln\sqrt{x^2+y^2+1}$$ so we got integrate by part that
$$xy\ln\sqrt{x^2+y^2+1}]_0^1-\int_0^1\frac{y}{\sqrt{x^2+y^2+1}}dx$$
and we got
$$[xy\ln\sqrt{x^2+y^2+1}]_0^1-[y\ln{\sqrt{x^2+y^2+1}}]_0^1$$
Remember that we solve dx. Is this correct?
Regards,
$$\int_0^1\int_0^1 \frac{xy}{\sqrt{x^2+y^2+1}} dxdy$$
I start with subsitate $$u=x <=> du=dx$$ and $$du= \frac{y}{\sqrt{x^2+y^2+1}} <=>u=y\ln\sqrt{x^2+y^2+1}$$ so we got integrate by part that
$$xy\ln\sqrt{x^2+y^2+1}]_0^1-\int_0^1\frac{y}{\sqrt{x^2+y^2+1}}dx$$
and we got
$$[xy\ln\sqrt{x^2+y^2+1}]_0^1-[y\ln{\sqrt{x^2+y^2+1}}]_0^1$$
Remember that we solve dx. Is this correct?
Regards,