A Double integral with infinite limits

Click For Summary
The discussion revolves around evaluating the double integral of a nonnegative function f(y) over infinite limits, specifically the expression ∫₀^∞ (∫ₓ^∞ f(y) dy) dx. A conjecture is proposed that this double integral equals ∫₀^∞ x f(x) dx, but counterexamples are discussed, particularly with functions like f(y) = 1/(y+1)², which show that the conjecture does not hold universally. The participants explore changing the order of integration to validate the conjecture under certain conditions, ultimately suggesting that if both integrals converge, the conjecture may still be true. The conversation highlights the importance of conditions for convergence and the validity of switching integration limits in double integrals.
NotEuler
Messages
58
Reaction score
2
I have the following problem and am almost sure of the answer but can't quite prove it:

##f(y)## is nonnegative, and I know that ##\int_0^{\infty } f(y) \, dy## is finite.

I now need to calculate (or simplify) the double integral:

$$\int_0^{\infty } \left(\int_x^{\infty } f(y) \, dy\right) \, dx$$

Now, I have a conjecture that this can be written as

$$\int_0^{\infty } x f(x) \, dx$$How could I go about proving such a thing?
 
Physics news on Phys.org
Isn't ##f(x) = \dfrac 1 {x^3}## a counterexample to your conjecture?
 
PeroK said:
Isn't ##f(x) = \dfrac 1 {x^3}## a counterexample to your conjecture?
It doesn't look like the integral ##\int_0^{\infty } f(y) \, dy## is finite with that function? So the conditions are not met.

But actually ##f(y) = \frac{1}{(y+1)^2}## does seem to be a counterexample: the inner integral converges, but the outer one does not. So I suppose the conjecture isn't true in general. Could it still be true if both integrals converge? At least numerical examples suggest so, and a similar construction using infinite sums seems to give a similar answer to my guess.
 
Here's an example of where my guess works:

##f(y) = \frac{1}{(y+1)^3}##
Then:
##\int_0^{\infty } \left(\int_x^{\infty } f(y) \, dy\right) \, dx = \int_0^{\infty } \ \frac{1}{2 (x+1)^2} \, dx = 1/2 ##

And also:
##\int_0^{\infty } x f(x) \, dx = 1/2##

So my guess gives the correct answer with this example (and many others).
 
NotEuler said:
It doesn't look like the integral ##\int_0^{\infty } f(y) \, dy## is finite with that function? So the conditions are not met.

But actually ##f(y) = \frac{1}{(y+1)^2}## does seem to be a counterexample: the inner integral converges, but the outer one does not. So I suppose the conjecture isn't true in general. Could it still be true if both integrals converge? At least numerical examples suggest so, and a similar construction using infinite sums seems to give a similar answer to my guess.

Now I am wondering if my counterexample really is a counterexample.

##\int_0^{\infty } \left(\int_x^{\infty } f(y) \, dy\right) \, dx## and ##\int_0^{\infty } x f(x) \, dx## both diverge with ##f(y) = \frac{1}{(y+1)^2}##, so I suppose from that perspective the conjecture still holds?

Either ##\int_0^{\infty } \left(\int_x^{\infty } f(y) \, dy\right) \, dx = \int_0^{\infty } x f(x) \, dx## or both of them diverge to infinity and are still 'equal' in that sense.

I'll stop talking to myself now...
 
NotEuler said:
I now need to calculate (or simplify) the double integral:

$$\int_0^{\infty } \left(\int_x^{\infty } f(y) \, dy\right) \, dx$$

Now, I have a conjecture that this can be written as

$$\int_0^{\infty } x f(x) \, dx$$
Replace ##f## by ##F'## (where ##F## is the antiderivative of ##f##) in both integrals, integrate-by-parts in the second integral, and then compare it to the first.
 
renormalize said:
Replace ##f## by ##F'## (where ##F## is the antiderivative of ##f##) in both integrals, integrate-by-parts in the second integral, and then compare it to the first.
Ah yes, I think I see at least partly. If I write ##F(x)=-\int_x^{\infty } f(y) \, dy##, then ##\int_0^{\infty } x f(x) \, dx = \int_0^{\infty } x F'(x) \, dx = [xF(x)]_0^∞ - \int_0^{\infty } F(x) \, dx##.

##[xF(x)]_0^∞## goes to 0 at the lower limit if ##F(x)## converges, but I am not quite sure how I can justify it going to zero at the upper limit. On the other hand, the last term ##- \int_0^{\infty } F(x) \, dx = \int_0^{\infty } \left(\int_x^{\infty } f(y) \, dy\right) \, dx ##. So, apart from the upper limit of ##[xF(x)]_0^∞## I think I get this. Many thanks!I had another idea, but I am not sure what the conditions are for it to be valid. The integration limits specify a triangle to the right of the y-axis and above the liny y=x. So can I then change the order of integration as follows:
##\int_0^{\infty } \left(\int_x^{\infty } f(y) \, dy\right) \, dx = \int_0^{\infty } \left(\int_0^{y } f(y) \, dx\right) \, dy = \int_0^{\infty }\left([xf(y)]_0^y \right)\, dy = \int_0^{\infty }\left(yf(y) \right)\, dy = \int_0^{\infty }xf(x) \, dx##

The new integration limits seem to specify exactly the same area, but again I am not sure exactly how to justify this.
 
NotEuler said:
I have the following problem and am almost sure of the answer but can't quite prove it:

##f(y)## is nonnegative, and I know that ##\int_0^{\infty } f(y) \, dy## is finite.

I now need to calculate (or simplify) the double integral:

$$\int_0^{\infty } \left(\int_x^{\infty } f(y) \, dy\right) \, dx$$

Now, I have a conjecture that this can be written as

$$\int_0^{\infty } x f(x) \, dx$$How could I go about proving such a thing?

Let R &gt; 0 and integrate xf(x) by parts: <br /> \begin{split}<br /> \int_0^R xf(x)\,dx &amp;= \left[ x\int_0^x f(y)\,dy\right]_0^R - \int_0^R \int_0^x f(y)\,dy\,dx \\<br /> &amp;= \int_0^R 1\,dx \int_0^R f(y)\,dy - \int_0^R \int_0^x f(y)\,dy\,dx \\<br /> &amp;= \int_0^R \left( \int_0^R f(y)\,dy - \int_0^x f(y)\,dy\right)\,dx \\<br /> &amp;= \int_0^R \int_x^R f(y)\,dy\,dx. \end{split} Now take the limit R \to \infty. (Note that not all of these steps are valid if you start with R = \infty.)
 
pasmith said:
Let R &gt; 0 and integrate xf(x) by parts: <br /> \begin{split}<br /> \int_0^R xf(x)\,dx &amp;= \left[ x\int_0^x f(y)\,dy\right]_0^R - \int_0^R \int_0^x f(y)\,dy\,dx \\<br /> &amp;= \int_0^R 1\,dx \int_0^R f(y)\,dy - \int_0^R \int_0^x f(y)\,dy\,dx \\<br /> &amp;= \int_0^R \left( \int_0^R f(y)\,dy - \int_0^x f(y)\,dy\right)\,dx \\<br /> &amp;= \int_0^R \int_x^R f(y)\,dy\,dx. \end{split} Now take the limit R \to \infty. (Note that not all of these steps are valid if you start with R = \infty.)

Thanks pasmith, looks great. One question: Is it always valid to take the limit of the two R:s in the last integral simultaneously? What I mean is that in the integral ##\int_0^{\infty } \left(\int_x^{\infty } f(y) \, dy\right) \, dx## it seems like the two infinities are 'separate'. In your solution the two R:s go to infinity at the same time. Can there be situations where these two are different?
 
  • #10
I think you can ignore how the two R's go to infinity at the same time because you're integrand is non-negative. You usually only have to worry about stuff like that when your infinite sum/ integral does not converge absolutely.
 
  • #11
NotEuler said:
I have the following problem and am almost sure of the answer but can't quite prove it:

##f(y)## is nonnegative, and I know that ##\int_0^{\infty } f(y) \, dy## is finite.

I now need to calculate (or simplify) the double integral:

$$\int_0^{\infty } \left(\int_x^{\infty } f(y) \, dy\right) \, dx$$

Now, I have a conjecture that this can be written as

$$\int_0^{\infty } x f(x) \, dx$$How could I go about proving such a thing?
The idea is to change to order of the integrations. Let's rewrite the integral in the physicists' notation first, which is more clear concerning the order of integrations:
$$I=\int_0^{\infty} \mathrm{d} x \int_x^{\infty} \mathrm{d} y f(y).$$
You integrate over the "upper triangle" of the plane ##[0,\infty] \times [0,\infty]##. So changing the order of integrations you get
$$I=\int_0^{\infty} \mathrm{d} y \int_0^y \mathrm{d} x f(y)=\int_0^{\infty} \mathrm{d} y y f(y).$$
Now you can call the integration variable anything you like. So renaming the ##y## to ##x## leads to
$$I=\int_0^{\infty} \mathrm{d} x x f(x).$$
Of course, all this is valid only, if the integrals exist/converge ;-)).
 
  • #12
NotEuler said:
Ah yes, I think I see at least partly. If I write ##F(x)=-\int_x^{\infty } f(y) \, dy##, then ##\int_0^{\infty } x f(x) \, dx = \int_0^{\infty } x F'(x) \, dx = [xF(x)]_0^∞ - \int_0^{\infty } F(x) \, dx##.

##[xF(x)]_0^∞## goes to 0 at the lower limit if ##F(x)## converges, but I am not quite sure how I can justify it going to zero at the upper limit. On the other hand, the last term ##- \int_0^{\infty } F(x) \, dx = \int_0^{\infty } \left(\int_x^{\infty } f(y) \, dy\right) \, dx ##. So, apart from the upper limit of ##[xF(x)]_0^∞## I think I get this. Many thanks!I had another idea, but I am not sure what the conditions are for it to be valid. The integration limits specify a triangle to the right of the y-axis and above the liny y=x. So can I then change the order of integration as follows:
##\int_0^{\infty } \left(\int_x^{\infty } f(y) \, dy\right) \, dx = \int_0^{\infty } \left(\int_0^{y } f(y) \, dx\right) \, dy = \int_0^{\infty }\left([xf(y)]_0^y \right)\, dy = \int_0^{\infty }\left(yf(y) \right)\, dy = \int_0^{\infty }xf(x) \, dx##

The new integration limits seem to specify exactly the same area, but again I am not sure exactly how to justify this.
In general, the switching can be justified. You can make upper limits finite and let to infinity.