B Double slit experiment combined with Stern-Gerlach

Nocturnial
Messages
1
Reaction score
0
TL;DR Summary
Would you still see an interference pattern if electrons were put through a Stern-Gerlach device after the double slit?
A bit of background: I've read Derive the probability of spin at arbitrary angle is cos( ) | Physics Forums post in this forum and went into a "thought rabbit hole". It didn't make any sense to me and I think I made a wrong assumption somewhere along the way. Instead of typing everything out, I thought it would be helpful to split my assumptions in several different posts.

In a double slit experiment with electrons you'll see an interference pattern (with enough electrons fired). Suppose after the double slit you put a Stern-Gerlach type experiment. Would you still see an interference pattern, but it separated into two rows depending on the spin or is the interference pattern lost?
 
Last edited:
Physics news on Phys.org
The exact result depends on the details of the experiment, like the relative orientation of the SG with respect to the slit, the SG separation compared to the size of the fringes, etc., but yes, the SG spots would each show an interference pattern.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top