Doubt about two limits (short)

Click For Summary
SUMMARY

The discussion focuses on finding two specific limits involving a function f(x). The first limit, \(\lim_{n \to +\infty}(\frac{f(a+\frac{1}{n})}{f(a)})^{\frac{1}{n}}\), evaluates to 1 using properties of logarithms and exponentials. The second limit, \(\lim_{x \to a} (\frac{f(x)}{f(a)})^{\frac{1}{\ln(x)-\ln(a)}}\), is approached using l'Hôpital's Rule, resulting in \(\frac{f'(a)}{af(a)}\). The discussion also clarifies the correct pronunciation of l'Hôpital's Rule.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with logarithmic functions and properties
  • Knowledge of l'Hôpital's Rule for indeterminate forms
  • Basic differentiation techniques
NEXT STEPS
  • Study the application of l'Hôpital's Rule in various limit problems
  • Explore the properties of logarithmic differentiation
  • Learn about the behavior of functions near points of discontinuity
  • Investigate advanced limit techniques, including epsilon-delta definitions
USEFUL FOR

Students and educators in calculus, mathematicians focusing on analysis, and anyone looking to deepen their understanding of limits and differentiation techniques.

Felafel
Messages
170
Reaction score
0

Homework Statement


Find the limit of
##1): \displaystyle \lim_{n \to +\infty}(\frac{f(a+\frac{1}{n})}{f(a)})^{\frac{1}{n}}##
##2) \displaystyle \lim_{x \to a} (\frac{f(x)}{f(a)})^{\frac{1}{ln(x)-ln(a)}}(=1^{\infty})##
I am not quite sure if i can solve it the way I did, it has been to easy so there's a trick, I'm afraid

The Attempt at a Solution


##1) \displaystyle \lim_{n \to +\infty}(\frac{f(a+\frac{1}{n})}{f(a)})^{\frac{1}{n}}##
=##\displaystyle \lim_{n \to +\infty} e^{\frac{1}{n} (log(f(a+\frac{1}{n})-log(f(a)))}##=
=##e^0=1##

##2) \displaystyle \lim_{x \to a} (\frac{f(x)}{f(a)})^{\frac{1}{ln(x)-ln(a)}}(=1^{\infty})##
##\displaystyle \lim_{x \to a} e^{ln(\frac{f(x)}{f(a)}) \frac{1}{ln(x)- ln(a)}}##
##\displaystyle \lim_{x \to a} \frac{ln(f(x))-ln(f(a))}{ln(x)- ln(a)}(=\frac{0}{0})## with de l'Hopital
##\displaystyle \lim_{x \to a} \frac{f'(x)}{xf(x)}=\frac{f'(a)}{af(a)}##
 
Physics news on Phys.org
Felafel said:

Homework Statement


Find the limit of
##1): \displaystyle \lim_{n \to +\infty}(\frac{f(a+\frac{1}{n})}{f(a)})^{\frac{1}{n}}##
##2) \displaystyle \lim_{x \to a} (\frac{f(x)}{f(a)})^{\frac{1}{ln(x)-ln(a)}}(=1^{\infty})##
I am not quite sure if i can solve it the way I did, it has been too easy so there's a trick, I'm afraid

The Attempt at a Solution


##1) \displaystyle \lim_{n \to +\infty}(\frac{f(a+\frac{1}{n})}{f(a)})^{\frac{1}{n}}##
=##\displaystyle \lim_{n \to +\infty} e^{\frac{1}{n} (log(f(a+\frac{1}{n})-log(f(a)))}##=
=##e^0=1##

##2) \displaystyle \lim_{x \to a} (\frac{f(x)}{f(a)})^{\frac{1}{ln(x)-ln(a)}}(=1^{\infty})##
##\displaystyle \lim_{x \to a} e^{ln(\frac{f(x)}{f(a)}) \frac{1}{ln(x)- ln(a)}}##
##\displaystyle \lim_{x \to a} \frac{ln(f(x))-ln(f(a))}{ln(x)- ln(a)}(=\frac{0}{0})## with de l'Hopital
##\displaystyle \lim_{x \to a} \frac{f'(x)}{xf(x)}=\frac{f'(a)}{af(a)}##

The derivative of ln(x) is 1/x.

You have 1/x in the denominator. That becomes x in the numerator. (You could have checked your result with an appropriate example.)
 
Felafel said:

Homework Statement


Find the limit of
##1): \displaystyle \lim_{n \to +\infty}(\frac{f(a+\frac{1}{n})}{f(a)})^{\frac{1}{n}}##
##2) \displaystyle \lim_{x \to a} (\frac{f(x)}{f(a)})^{\frac{1}{ln(x)-ln(a)}}(=1^{\infty})##
I am not quite sure if i can solve it the way I did, it has been to easy so there's a trick, I'm afraid

The Attempt at a Solution


##1) \displaystyle \lim_{n \to +\infty}(\frac{f(a+\frac{1}{n})}{f(a)})^{\frac{1}{n}}##
=##\displaystyle \lim_{n \to +\infty} e^{\frac{1}{n} (log(f(a+\frac{1}{n})-log(f(a)))}##=
=##e^0=1##

##2) \displaystyle \lim_{x \to a} (\frac{f(x)}{f(a)})^{\frac{1}{ln(x)-ln(a)}}(=1^{\infty})##
##\displaystyle \lim_{x \to a} e^{ln(\frac{f(x)}{f(a)}) \frac{1}{ln(x)- ln(a)}}##
##\displaystyle \lim_{x \to a} \frac{ln(f(x))-ln(f(a))}{ln(x)- ln(a)}(=\frac{0}{0})## with de l'Hopital
##\displaystyle \lim_{x \to a} \frac{f'(x)}{xf(x)}=\frac{f'(a)}{af(a)}##

Note: that should be l'Hospital"---like the place with the emergency ward---not "l'Hopital" (although it is pronounced as "lo-pee-tal", with a silent 's').
 
Ray Vickson said:
Note: that should be l'Hospital"---like the place with the emergency ward---not "l'Hopital" (although it is pronounced as "lo-pee-tal", with a silent 's').

I tend to see it as l'Hôpital, so maybe they read l'Hôpital and didn't know how to type an ô?
 
thanks everyone!
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
Replies
5
Views
2K
Replies
17
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K