Doubt Calculating the Total Displacement for this Person Walking

Click For Summary
SUMMARY

The discussion focuses on calculating total displacement using the formula ##\Delta d = d_f - d_i##. Participants clarify that when dealing with displacements in opposite directions, one must consider the signs of the values. The correct calculation involves adding the displacements as vectors, resulting in a total displacement of ##1.2~\rm{km}, south##. The confusion arises from misapplying the formula by not accounting for the directional signs of the displacements.

PREREQUISITES
  • Understanding of vector addition and subtraction
  • Familiarity with displacement and distance concepts
  • Knowledge of scalar and vector quantities
  • Basic proficiency in kinematics
NEXT STEPS
  • Study vector addition in physics
  • Learn about scalar versus vector quantities
  • Explore kinematic equations and their applications
  • Review examples of displacement calculations in different contexts
USEFUL FOR

Students studying physics, educators teaching kinematics, and anyone needing clarification on displacement calculations and vector addition.

Remle
Messages
12
Reaction score
8
Homework Statement
You start walking home from school. After walking 1.3 km North, you get a phone call on your cell from your mom asking if you can meet her at the mall. You will have to turn around and walk 2.5 km South. Determine your distance and displacement to get to the mall.
Relevant Equations
d=df-di
I having a little bit of problem with ##\Delta d = d_f - d_i##. When substituting fo ##d_f## and ##d_i##, should I follow the signs rule (positive or negative)?
For example,
The problem shows that the displacement is ##1.2~\rm{km}, south## by solving ##\Delta d = -2.5 + 1.3## and I get that, but if I use the formula above the equation would appear like this ##\Delta d = -2.5 - 1.3## which gives me ##-3.8~\rm{km}## or ##3.8~\rm{km}, south##.

What am I missing?

source: http://www.studyphysics.ca/2007/20/01_kinematics/08_velocity.pdf
 
Physics news on Phys.org
There are two displacements, one is 1.3 km North and the other is 2.5 km South. The overall displacement is the sum of the two. Note that the displacements have opposite directions so you are adding a positive and a negative number.
 
  • Like
Likes   Reactions: Remle
kuruman said:
There are two displacements.
THIS is what I needed. So first displacement is ##\Delta d = 1.3 - 0## and the second is ##\Delta d = 0 - 2.5## so to speak.
 
Remle said:
THIS is what I needed. So first displacement is ##\Delta d = 1.3 - 0## and the second is ##\Delta d = 0 - 2.5## so to speak.
If you are given two points (a start point and an end point), then the dispalcement is the position vector of the end point minus the position vector of the start point.

But, in this case you are given the displacements, so there is no need for any subtraction:
$$\Delta d_1 = 1.3km, \ \Delta d_2 = - 2.5km$$
 
  • Like
Likes   Reactions: Remle
@Remle -- what did you get for the distance answer?
 
berkeman said:
@Remle -- what did you get for the distance answer?
Sorry for the late response. For the distance since is a scalar just had to add all the numbers. ##d = 1.3 + 2.5 = 3.8~\rm{km}##.
 
  • Like
Likes   Reactions: hmmm27 and berkeman
Remle said:
Sorry for the late response. For the distance since is a scalar just had to add all the numbers. ##d = 1.3 + 2.5 = 3.8~\rm{km}##.
No, distance is not a scalar, it is a magnitude. Scalars have sign.
Taking North as positive you can find displacement using scalars: 1.3km+(-2.5)km N = -1.2km N, or 1.2km S.
For distances you add the magnitudes |1.3|+|-2.5|=3.8.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
11
Views
7K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
7K