A Doubt in a step while deriving Bertrand theorem

AI Thread Summary
The discussion revolves around the derivation of Bertrand's Theorem as presented in Goldstein's 2nd edition, specifically addressing the use of Fourier expansion in the context of the orbit equation under a conservative central force. The author questions the rationale behind employing only cosine terms in the Fourier expansion of the deviation from circularity, ##x##, particularly in relation to the evenness of the right-hand side of equation A-10. It is suggested that the evenness of the solution may stem from the nature of the orbit equation, where if ##u(x)## is a solution, then ##u(-x)## is also a solution. The discussion highlights the importance of understanding the conditions under which the right-hand side of A-10 behaves as an even function of ##\theta##. Clarity on these conditions is essential for justifying the choice of Fourier terms in the derivation.
Kashmir
Messages
466
Reaction score
74
Goldstein 2nd ed.

In its Appendix is given the derivation of Bertrands Theorem.
Screenshot_20211029_103327.jpg
Here ##x=u-u_0## is the deviation from circularity and ##J(u)=-\frac{m}{l^{2}} \frac{d}{d u} V\left(\frac{1}{u}\right)=-\frac{m}{l^{2} u^{2}} f\left(\frac{1}{u}\right)##

If the R.H.S of A-10 was zero, the solution was then ##a \cos(β\theta)##. However if there are terms on the RHS as given in equation A-10 the author writes the solution as a Fourier sum involving only cosine terms .
Now how does the author know that we should use a Fourier expansion of ##x## using only cosine terms with argument ##β\theta##?
 
Last edited:
Physics news on Phys.org
Do you have a condition that RHS of A-10 is even function of ##\theta## ?
 
anuttarasammyak said:
Do you have a condition that RHS of A-10 is even function of ##\theta## ?
We started from the orbit equation under a conservative central force written as
##
\frac{d^{2} u}{d \theta^{2}}+u=J(u)
##
where
##
J(u)=-\frac{m}{l^{2}} \frac{d}{d u} V\left(\frac{1}{u}\right)=-\frac{m}{l^{2} u^{2}} f\left(\frac{1}{u}\right)
## which i believe if ##u(x)##is its solution then ##u(-x)## is as well.
So maybe the eveness of solution comes from here. I'm not sure.
 
Thread 'Gauss' law seems to imply instantaneous electric field'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Hello! Let's say I have a cavity resonant at 10 GHz with a Q factor of 1000. Given the Lorentzian shape of the cavity, I can also drive the cavity at, say 100 MHz. Of course the response will be very very weak, but non-zero given that the Loretzian shape never really reaches zero. I am trying to understand how are the magnetic and electric field distributions of the field at 100 MHz relative to the ones at 10 GHz? In particular, if inside the cavity I have some structure, such as 2 plates...
Back
Top