MHB Draw Line of Best Fit: Canada Exchange Rate US Dollar 1998-2007

  • Thread starter Thread starter Phobosdeimos
  • Start date Start date
  • Tags Tags
    Fit Lines
Phobosdeimos
Messages
1
Reaction score
0
The average annual exchange rate in Canada for the US Dollar from 1998-2007 is shown in the following table. Draw a scatter plot, without using graphing technology

Year Exchange Rate
1998 .67
1999 .67
2000 .70
2001 .74
2002 .80
2003 .81
2004 .86
2005 .87
2006 .90
2007 .99

To determine the Slope I did the following
1998 - 2006 = -8
.67 - .90 = -.23

y= .23
Divide
x = -8

The slope of the line is - 0.02875

I then tried the y intercept
y = mx +b

.90 = - 0.02875 (2006) + b

.90 = -57.6725 + b

.90
- 57.6725 = b

b = 58.5725

This is what I came up for the y Intercept (58.5725)

Doesn't seem right to me

Please Help

Phobos
 
Mathematics news on Phys.org
Phobosdeimos said:
The average annual exchange rate in Canada for the US Dollar from 1998-2007 is shown in the following table. Draw a scatter plot, without using graphing technology

Year Exchange Rate
1998 .67
1999 .67
2000 .70
2001 .74
2002 .80
2003 .81
2004 .86
2005 .87
2006 .90
2007 .99

To determine the Slope I did the following
1998 - 2006 = -8
.67 - .90 = -.23

y= .23
Divide
x = -8

The slope of the line is - 0.02875

I then tried the y intercept
y = mx +b

.90 = - 0.02875 (2006) + b

.90 = -57.6725 + b

.90
- 57.6725 = b

b = 58.5725

This is what I came up for the y Intercept (58.5725)

Doesn't seem right to me

Please Help

Phobos

Hi Phobosdeimos,

The question tells you to draw a scatter plot according to the given data. Your slope and y-intercept is for the straight line that goes through the two points $(1998, 0.67)$ and $(2006, 0.90)$. If the points given approximately lie on a straight line you can find the best fitting straight line using linear regression as below.

Introduction to Linear Regression
 
Very interesting to read this article.I would like to thank you for the efforts you had made for writing this awesome article. This article inspired me to read more. keep it up.
<a href="https://www.excelr.com/blog/data-science/statistics-for-data-scientist/Correlation-vs-covariance">Correlation vs Covariance</a>
<a href="https://www.excelr.com/blog/data-science/regression/simple-linear-regression">Simple linear regression</a>
<a href="https://www.excelr.com/mock-interview/data-science-interview-questions">data science interview questions</a>
 
I am confused. You titled this "Line of best fit" and show how you have tried to calculate a slope and y-intercept. But the problem, at least the part you show, says nothing about any line! It asks only for a scatter plot. Do you know what that is?
https://en.wikipedia.org/wiki/Scatter_plot
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
7
Views
3K
Replies
7
Views
4K
Back
Top