D's question at Yahoo Answers regarding the existence of limits

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Existence Limits
Click For Summary
SUMMARY

The discussion focuses on the conditions necessary for the existence of limits in a piecewise function defined as $$f(x)=\begin{cases} \cos\left(\frac{\pi x}{2} \right)+a && x<-2 \\ 100 && x=-2 \\ 2x^2+b && -2 PREREQUISITES

  • Understanding of piecewise functions
  • Knowledge of limit definitions in calculus
  • Familiarity with trigonometric functions and their limits
  • Basic algebra for solving equations
NEXT STEPS
  • Study the properties of piecewise functions in calculus
  • Learn about continuity and discontinuity in functions
  • Explore advanced limit techniques, including one-sided limits
  • Practice solving limit problems involving piecewise functions
USEFUL FOR

Students studying calculus, educators teaching limit concepts, and anyone interested in understanding piecewise function behavior in mathematical analysis.

Physics news on Phys.org
Hello D,

We are given:

$$f(x)=\begin{cases}
\cos\left(\frac{\pi x}{2} \right)+a && x<-2 \\
100 && x=-2 \\
2x^2+b && -2<x<0 \\
2^x+1 && 0<x \\
\end{cases}
$$

In order for $$\lim_{x\to-2}f(x)$$ to exist, we require:

$$\lim_{x\to-2^{-}}f(x)=\lim_{x\to-2^{+}}f(x)$$

Now, using the definition of $f(x)$, we find this means:

$$\lim_{x\to-2^{-}}\left(\cos\left(\frac{\pi x}{2} \right)+a \right)=\lim_{x\to-2^{+}}\left(2x^2+b \right)
$$

$$\cos\left(\frac{\pi\cdot2}{2} \right)+a=2(2)^2+b$$

$$-1+a=8+b$$

$$a=9+b$$

In order for $$\lim_{x\to0}f(x)$$ to exist, we require:

$$\lim_{x\to0^{-}}f(x)=\lim_{x\to0^{+}}f(x)$$

Now, using the definition of $f(x)$, we find this means:

$$\lim_{x\to0^{-}}\left(2x^2+b \right)=\lim_{x\to0^{+}}\left(2^x+1 \right)$$

$$2(0)^2+b=2^0+1$$

$$b=2\,\therefore\,a=11$$

This ensures the limits exist, and while there is a discontinuity at $x=-2$, this is allowed as the function need not have the value of the limits at that point.

To D and any other guests viewing this topic, I invite and encourage you to post other calculus problems here in our http://www.mathhelpboards.com/f10/ forum.

Best Regards,

Mark.
 

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K