MHB DW123's question at Yahoo Answers regarding partial fraction decomposition

Click For Summary
The discussion revolves around decomposing the function f(x) = (-10x-7) / (2x^2-17x+21) into simpler fractions. The numerator and denominator are factored to yield f(x) = - (10x + 7) / ((2x - 3)(x - 7)). The decomposition is assumed to take the form A/(2x-3) + B/(x-7), leading to the values A = 4 and B = -7 through the Heaviside cover-up method. The final result of the decomposition is f(x) = 4/(2x-3) - 7/(x-7). This method is commonly taught in pre-calculus and calculus for integrating functions.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Mathematics news on Phys.org
Hello DW123,

We are give to decompose:

$\displaystyle f(x)=\frac{-10x-7}{2x^2-17x+21}$

Our first step is to factor the numerator and denominator:

$\displaystyle f(x)=-\frac{10x+7}{(2x-3)(x-7)}$

Now, we will assume the decomposition will take the form:

$\displaystyle -\frac{10x+7}{(2x-3)(x-7)}=\frac{A}{2x-3}+\frac{B}{x-7}$

Using the Heaviside cover-up method, we may find the value of $A$ by covering up the factor $(2x-3)$ on the left side, and evaluate what's left where $x$ takes on the value of the root of the covered up factor, i.e., $\displaystyle x=\frac{3}{2}$. Hence:

$\displaystyle A=-\frac{10\cdot\frac{3}{2}+7}{\frac{3}{2}-7}=4$

Likewise, we find the value of $B$ by covering up the factor $(x-7)$ on the left side, and evaluate what's left for $x=7$:

$\displaystyle B=-\frac{10\cdot7+7}{2\cdot7-3}=-7$

And so we conclude that:

$\displaystyle f(x)=\frac{-10x-7}{2x^2-17x+21}=\frac{4}{2x-3}-\frac{7}{x-7}$

To DW123 or any other guests viewing this topic, partial fraction decomposition is sometimes taught in pre-calculus, but usually in calculus as a means of integrating functions, so if you have other related questions, please feel free to post them in:

http://www.mathhelpboards.com/f21/

http://www.mathhelpboards.com/f10/
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
998
Replies
9
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
1K