MHB Dynamical Systems and Markov Chains

Swati
Messages
16
Reaction score
0
Prove that if \(P\) is a stochastic matrix whose entries are all greater than or equal to \(\rho\), then the entries of \(P^{2}\) are greater than or equal to \(\rho\).
 
Last edited by a moderator:
Physics news on Phys.org
Swati said:
Prove that if P is a stochastic matrix whose entries are all greater than or equal to /{/rho}, then the entries of /{/P^{2}} are greater than or equal to /{/rho}.

Let \(P\) be an \(N\times N\) matrix, then \( N \rho \le 1\) so \(\rho \le 1/N\).

Now every element of \(P^2\) is \( \le N \rho^2 \le \rho \) etc

CB
 
CaptainBlack said:
Let \(P\) be an \(N\times N\) matrix, then \( N \rho \le 1\) so \(\rho \le 1/N\).

Now every element of \(P^2\) is \( \le N \rho^2 \le \rho \) etc

CB
[FONT=MathJax_Math]how we get, N[FONT=MathJax_Math]ρ[FONT=MathJax_Main]≤[FONT=MathJax_Main]1
 
Swati said:
[FONT=MathJax_Math]how we get, N[FONT=MathJax_Math]ρ[FONT=MathJax_Main]≤[FONT=MathJax_Main]1

Depending on how the stochastic matrix is defined either the row or column sums are 1, but if every element is \( \ge \rho\) then a row (column) sum \( \ge N\rho\)

CB
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top