E Measurable Implies E + y Measurable

The problem statement, all variables and given/known data
Show that if a subset E or R is measurable, then each translate E + y of E is also measurable.

Relevant equations
E is measurable if for all subsets A of R

[tex]m^*(A) = m^*(A \cap E) + m^*(A \cap (\textbf R \setminus E))[/tex]

where m* is the outer measure.

The attempt at a solution
The result is trivial if y = 0, so supposes y is not 0. I will denote the complement of a subset of R using '. Let F = E + y. By monotonicity of m*,

[tex]m^*(A) \le m^*(A \cap F) + m^*(A \cap F')[/tex]

In the other direction, I have determined the following: Since E is a subset of F' and F is a subset of E', we have that [itex]A \cap E \subseteq A \cap F'[/itex] and [itex]A \cap F \subseteq A \cap E'[/itex]. By monotonicity of m*, [itex]m^*(A \cap E) \le m^*(A \cap F')[/itex] and [itex]m^*(A \cap F) \le m^*(A \cap E')[/itex]. The former inequality is no good, but the latter one isn't. I don't know how to proceed from here. Any tips?

The Physics Forums Way

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving