B E. Potential Energy: Uniformly Charged Hollow Sphere and Point Charge

AI Thread Summary
The discussion centers on the electric potential energy between a uniformly charged hollow sphere and a point charge, specifically at the surface of the sphere. It is established that the formula for electric potential energy, U = k(q1q2/r), assumes the hollow sphere behaves like a point charge due to the Shell Theorem. The conversation explores whether this relationship holds for non-spherical objects and under different conditions, emphasizing that the formula applies for spherically symmetric charge distributions. The potential energy is defined differently based on the distance from the center of the sphere, with U(R) = k(q1q2/R) for R > r and U(R) = k(q1q2/r) for R < r. The discussion concludes that the electric potential energy is contingent on the symmetry of the charge distribution.
Heisenberg7
Messages
101
Reaction score
18
I was doing a problem with this one detail. It says that the electric potential energy of an uniformly charged hollow sphere and a point charge is (at the surface of the hollow sphere; both positive): $$U = k \frac{q_1 q_2}{r}$$ I guess this assumes that the hollow sphere is a point charge. Now my question is, does the electric potential energy depend on other physical properties of an object? Or is this like the Newton's Shell Theorem? What if the object wasn't spherical?
 
Physics news on Phys.org
Heisenberg7 said:
I guess this assumes that the hollow sphere is a point charge.
You do not tell us what are q_1,q_2 and r so that we can follow your guess condifently.
BTW
U=k \sum_{i&lt;j}\frac{q_iq_j}{r_{ij}}
is a fundamental rule for system of point charges whatever distributions they have.
 
Last edited:
anuttarasammyak said:
You do not tell us what are q_1,q_2 and r so that we can follow your guess condifently.
Charge of the sphere and the point charge respectively. ##r## is the radius of the sphere. Now, in general, does it hold if ##R > r## (where ##R## represents the distance from the center)?
 
By the shell theorem, the field outside any spherically symmetric charge distribution is the same as that of a point charge with the same total charge at the center of the sphere. Yes, this is only true for spherically symmetric distributions.
 
  • Like
Likes Heisenberg7
Heisenberg7 said:
Now, in general, does it hold if R>r (where R represents the distance from the center)?
U(R)=k\frac{q_1q_2}{R} for R > r
U(R)=k\frac{q_1q_2}{r} for R < r
 
  • Like
Likes Heisenberg7
Thread 'Applying the Gauss (1835) formula for force between 2 parallel DC currents'
Please can anyone either:- (1) point me to a derivation of the perpendicular force (Fy) between two very long parallel wires carrying steady currents utilising the formula of Gauss for the force F along the line r between 2 charges? Or alternatively (2) point out where I have gone wrong in my method? I am having problems with calculating the direction and magnitude of the force as expected from modern (Biot-Savart-Maxwell-Lorentz) formula. Here is my method and results so far:- This...
This is from Griffiths' Electrodynamics, 3rd edition, page 352. I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##. In matrix form, this tensor should look like this...
It may be shown from the equations of electromagnetism, by James Clerk Maxwell in the 1860’s, that the speed of light in the vacuum of free space is related to electric permittivity (ϵ) and magnetic permeability (μ) by the equation: c=1/√( μ ϵ ) . This value is a constant for the vacuum of free space and is independent of the motion of the observer. It was this fact, in part, that led Albert Einstein to Special Relativity.
Back
Top