MHB E1.4b Determinant with zero column

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$$\left[\begin{array}{rrrrr}
1 &0 &2 &1\\
1 &1 &0 &1\\
1 &3 &4 &1\\
-1 &-3 &-4 &-1
\end{array}\right]=\color{red}{0}$$Answer (red) via W|Aok I did not do any operations on this
Since by observation the 4th column can become all zero'showever didn't see anything in the book to support this
only that the co-factor expansion would result in multiplying zeros throughoutany suggestions?
 
Physics news on Phys.org
Surely in your textbook there is the rule "If two rows or columns of a matrix are equal" (or the more general "if one row or column is a multiple of another") "then the determinant is 0". One way to evaluate the determinant of matrix is to use "row operations" to reduce the matrix to a simpler matrix. The row operations are "multiply an entire row by a constant", "swap two rows", and "add a multiple of on row to another". The first multiplies the determinant by that constant. The second multiplies the determinant by -1. The third does not change the determinant.

In particular, if two rows of a matrix are the same, adding -1 times one of those rows to the other gives a matrix having all "0"s in one row. "Expanding" on that row gives 0 as the determinant 0.

(Of course you can replace "row" by "column" thoughout.)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K