MHB Each equivalence class is a power of [g]

Click For Summary
The discussion centers on the multiplicative group of integers modulo 15, specifically addressing the equivalence classes in Z*15. It is established that there is no single equivalence class [g] in Z*15 such that every equivalence class is a power of [g], as the group is not cyclic. The group is identified as the direct product of the multiplicative groups of Z3 and Z5, consisting of a cyclic group of order 2 and another of order 4. Consequently, the orders of the elements are limited to 1, 2, or 4, with no element exhibiting order 8. This confirms the initial assertion that a single generator for all equivalence classes does not exist.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! :)

I have to find an equivalence class $[g] \in \mathbb{Z_{15}}^{*}$ so that each equivalence class $\in \mathbb{Z}^{*}_{15}$ is a power of $[g]$.

$\mathbb{Z}^{*}_{15}=\{[1],[2],[4],[7],[8],[11],[13],[14]\}$

I tried several powers of the above classes,and I think that there is no equivalence class $[g] \in \mathbb{Z_{15}}^{*}$ so that each equivalence class $\in \mathbb{Z}^{*}_{15}$ is a power of $[g]$.Is it actually like that or am I wrong?? (Thinking)
 
Physics news on Phys.org
Re: each equivalence class is a power of [g]

In fact:

$\langle [1]\rangle = \{[1]\}$

$\langle [2]\rangle = \{[1],[2],[4],[8]\} = \langle [8]\rangle$

$\langle [4]\rangle = \{[1],[4]\}$

$\langle [7]\rangle = \{[1],[7],[4],[13]\} = \langle [13]\rangle$

$\langle [11]\rangle = \{[1],[11]\}$

$\langle [14]\rangle = \{[1],[14]\}$

which shows that every element has order 1,2 or 4, and that no element has order 8.

(for $g > 7$ it is easier to compute $\langle[g]\rangle$ as $\langle[-(15-g)]\rangle$).
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
835
  • · Replies 26 ·
Replies
26
Views
810
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
11
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K