MHB Eaglesfan1717's question at Yahoo Answers regarding a trigonometric equation

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Help with trig equation :)?

sin x = 2 sin x cos x

Here is a link to the question:

Help with trig equation :)? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello eaglesfan1717,

We are given to solve:

$$\sin(x)=2\sin(x)\cos(x)$$

I would arrange the equation so that we may factor and utilize the zero-factor property:

$$2\sin(x)\cos(x)-\sin(x)=0$$

$$\sin(x)(2\cos(x)-1)=0$$

Equating the factors in turn to zero yields the following roots:

i) $$\sin(x)=0$$

$$x=k\pi$$ where $$k\in\mathbb{Z}$$.

ii) $$2\cos(x)-1=0$$

$$\cos(x)=\frac{1}{2}$$

$$x=\pm\frac{\pi}{3}+2k\pi=\frac{\pi}{3}(6k\pm1)$$

To eaglesfan1717 and any other guests viewing this topic, I invite and encourage you to post your trigonometry questions in our http://www.mathhelpboards.com/f12/ forum.

Best Regards,

Mark.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top