MHB Edgar's Question from Facebook: Convex Polygon

  • Thread starter Thread starter Sudharaka
  • Start date Start date
  • Tags Tags
    Convex Polygon
AI Thread Summary
The problem states that the sum of the interior angles of a convex polygon is ten times the sum of its exterior angles. The formula for the sum of the interior angles of a convex polygon with n sides is S=(n-2)180°. The sum of the exterior angles is always 360°. By setting up the equation (n-2)180°=10*360° and solving, it is determined that n=22. Therefore, a convex polygon with 22 sides satisfies the condition given.
Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Edgar from Facebook writes:

The sum of the measures of the interior angles of a convex polygon is ten times the sum of the measures of its exterior angles. Find the number of sides of a polygon.

Hello could you please help me to solve this problem?
 
Mathematics news on Phys.org
Hello Edgar,

We need two theorems here:
  • For a convex polygon having $n$ sides, the sum $S$ of the interior angles is given by $S=(n-2)180^{\circ}$.
  • Regardless of the number of sides, the sum of the exterior angles is $360^{\circ}$.

Hence, we need to solve the following for $n$:

$(n-2)180^{\circ}=10\cdot360^{\circ}$

Divide through by $180^{\circ}$:

$(n-2)=10\cdot2$

$n-2=20$

$n=22$

Thus, we have found a convex polygon having 22 sides meets the stated requirement.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top