Efficient Integral by Parts Method | Solving x^2arctan(x)dx with Ease

  • Context: MHB 
  • Thread starter Thread starter Chipset3600
  • Start date Start date
  • Tags Tags
    Integral parts
Click For Summary
SUMMARY

The forum discussion focuses on solving the integral \(\int x^2 \arctan(x) \, dx\) using integration by parts (IBP) and alternative methods. A key recommendation is to simplify the integrand \(\frac{x^3}{1+x^2}\) through long division, resulting in \(\int \left(x - \frac{x}{1+x^2}\right) \, dx\), which avoids the need for IBP. Additionally, a substitution method using \(u = 1 + x^2\) is discussed, but the integrand must be correctly transformed to \(\int \frac{u-1}{2u} \, du\) for accurate results.

PREREQUISITES
  • Integration techniques, specifically integration by parts (IBP)
  • Long division of polynomials
  • Substitution methods in calculus
  • Understanding of arctangent function properties
NEXT STEPS
  • Study the method of integration by parts in detail
  • Practice polynomial long division with various functions
  • Learn about substitution techniques in integral calculus
  • Explore properties and applications of the arctangent function
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus, who are looking to enhance their skills in solving integrals and understanding different integration techniques.

Chipset3600
Messages
79
Reaction score
0
Hello MHB, I'm trying to solve this integral:\int x^2arctan(x)dx by parts :
here is a litle bit of my resolution: http://i.imgur.com/dZk8M.jpg

when I tried to solve the integral I named B fell into a sort of lool lool.
 
Physics news on Phys.org
Chipset3600 said:
Hello MHB, I'm trying to solve this integral:\int x^2arctan(x)dx by parts :
here is a litle bit of my resolution: http://i.imgur.com/dZk8M.jpg

when I tried to solve the integral I named B fell into a sort of lool lool.

All looks good so far. Let's focus on this guy, though:

\[\int\frac{x^3}{1+x^2}\,dx\]

I would first recommend you reduce the integrand using long division. Doing this correctly should yield

\[\frac{x^3}{1+x^2}=x-\frac{x}{1+x^2}\]

So, we see that

\[\int\frac{x^3}{1+x^2}\,dx=\int\left(x-\frac{x}{1+x^2}\right)\,dx\]

This should be a straightforward integration; no IBP is needed at this point.

Combine this result with everything else you have and you'll get your answer.

I hope this makes sense!
 
Chris L T521 said:
All looks good so far. Let's focus on this guy, though:

\[\int\frac{x^3}{1+x^2}\,dx\]

I would first recommend you reduce the integrand using long division. Doing this correctly should yield

\[\frac{x^3}{1+x^2}=x-\frac{x}{1+x^2}\]

So, we see that

\[\int\frac{x^3}{1+x^2}\,dx=\int\left(x-\frac{x}{1+x^2}\right)\,dx\]

This should be a straightforward integration; no IBP is needed at this point.

Combine this result with everything else you have and you'll get your answer.

I hope this makes sense!

Thanks, it was much simpler, I tried to do polynomial division, but not crossed my mind to separate fractions by.
Thank you
 
I have tried another method: use the substitution $u = 1+x^2$. Therefore $du = 2x \, dx$ and $x^2 = u-1$. The integral changes shape into

$$\int \frac{x^3}{1+x^2} \, dx = \frac{1}{2} \int (u-1) \, du.$$

This yields

$$\frac{1}{2} \int (u-1) \, du = \frac{u^2}{4} + \frac{u}{2} + C = \frac{(x^2 +1)^2}{4} + \frac{(x^2 +1)}{2} + C.$$

However, it is a different answer. What is wrong?
 
Fantini said:
I have tried another method: use the substitution $u = 1+x^2$. Therefore $du = 2x \, dx$ and $x^2 = u-1$. The integral changes shape into

$$\int \frac{x^3}{1+x^2} \, dx = \frac{1}{2} \int (u-1) \, du.$$

This yields

$$\frac{1}{2} \int (u-1) \, du = \frac{u^2}{4} + \frac{u}{2} + C = \frac{(x^2 +1)^2}{4} + \frac{(x^2 +1)}{2} + C.$$

However, it is a different answer. What is wrong?

Your integrand after making the substitution isn't correct. You should have

\[\int \frac{x^3}{1+x^2}\,dx\xrightarrow{u=x^2+1}{}\int \frac{u-1}{2u}\,du.\]
 
Last edited:
Good point, I had forgotten that part. Now the answer is complete (and easier). Thanks Chris! (Clapping)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K