- #1
- 11
- 0
Hi all,
the annihilation operator satisfies the equation [tex]\hat{a}[/tex]|n>=[tex]\sqrt{n}[/tex]|n-1> and [tex]\hat{a}[/tex]|0>=0
so the matrix of [tex]\hat{a}[/tex] should be
http://www.tuchuan.com/a/2010020418032158925.jpg [Broken]
and zero is the only eigenvalue of this matrix.
The coherent state is defined by [tex]\hat{a}[/tex]|[tex]\alpha[/tex]>=a|[tex]\alpha[/tex]>, yet [tex]\alpha[/tex]are not always equal to zero
Is there anything I forgot to consider?
the annihilation operator satisfies the equation [tex]\hat{a}[/tex]|n>=[tex]\sqrt{n}[/tex]|n-1> and [tex]\hat{a}[/tex]|0>=0
so the matrix of [tex]\hat{a}[/tex] should be
http://www.tuchuan.com/a/2010020418032158925.jpg [Broken]
and zero is the only eigenvalue of this matrix.
The coherent state is defined by [tex]\hat{a}[/tex]|[tex]\alpha[/tex]>=a|[tex]\alpha[/tex]>, yet [tex]\alpha[/tex]are not always equal to zero
Is there anything I forgot to consider?
Last edited by a moderator: