- #1
shiri
- 85
- 0
Let A be a matrix corresponding to projection in 2 dimensions onto the line generated by a vector v.
A) lambda = −1 is an eigenvalue for A
B) The vector v is an eigenvector for A corresponding to the eigenvalue lambda = −1.
C) lambda = 0 is an eigenvalue for A
D) Any vector w perpendicular to v is an eigenvector for A corresponding to the eigenvalue lambda = −1.
E) Any vector w perpendicular to v is an eigenvector for A corresponding to the eigenvalue lambda = 0.
A) A matrix must have a non-zero eigenvalue.
B) The vector is an eigenvector of corresponding to the eigenvalue.
C) See A
D) When a vector is perpendicular to A, it must be zero for eigenvalue (If it was nonzero eigenvalue, then it is not perpendicular)
E) See D
So far I believe A, B, E are true? What do you think? Please help me.
A) lambda = −1 is an eigenvalue for A
B) The vector v is an eigenvector for A corresponding to the eigenvalue lambda = −1.
C) lambda = 0 is an eigenvalue for A
D) Any vector w perpendicular to v is an eigenvector for A corresponding to the eigenvalue lambda = −1.
E) Any vector w perpendicular to v is an eigenvector for A corresponding to the eigenvalue lambda = 0.
A) A matrix must have a non-zero eigenvalue.
B) The vector is an eigenvector of corresponding to the eigenvalue.
C) See A
D) When a vector is perpendicular to A, it must be zero for eigenvalue (If it was nonzero eigenvalue, then it is not perpendicular)
E) See D
So far I believe A, B, E are true? What do you think? Please help me.