Eigenvectors and Eigenvalues: Finding Solutions for a Matrix

Click For Summary
The discussion revolves around the confusion regarding eigenvalues and eigenvectors of an invertible matrix. It clarifies that while an invertible matrix has a zero vector in its kernel, this does not imply that the only eigenvector is the zero vector. The zero vector is not considered an eigenvector, and the presence of non-zero eigenvalues (1, 2, 3) indicates that there are indeed non-zero eigenvectors associated with them. The misunderstanding stems from a misinterpretation of theorems related to invertibility and eigenvectors. A proper understanding of eigenvalues and eigenvectors is essential for solving such problems effectively.
DiamondV
Messages
103
Reaction score
0

Homework Statement


Find the eigenvalues and associated eigenvector of the following matrix:
32e0fe9a83.png


Homework Equations

The Attempt at a Solution


302cba53a4.jpg


We have a theorem in our lectures notes that states that if a matrix is invertible the only eigenvector in its kernel will be the zero vector. In order to find out if it is invertible we get the det(A) and see if its equal to 0 or not, if it is equal to 0(you can't divide by 0) then there is no inverse, if it is not equal to 0(like in this case I got 6) then it is invertible and the only vector is the zero vector in the kernel. So technically I should stop my calculations at this point and say the zero vector is the only one.
However in the solutions given to use they have an answer that is not a 0 vector.
3b0554f97a.png

1,2,3 are eigenvalues.
How is this possible?
 
Physics news on Phys.org
DiamondV said:

Homework Statement


Find the eigenvalues and associated eigenvector of the following matrix:
32e0fe9a83.png


Homework Equations

The Attempt at a Solution


302cba53a4.jpg


We have a theorem in our lectures notes that states that if a matrix is invertible the only eigenvector in its kernel will be the zero vector. In order to find out if it is invertible we get the det(A) and see if its equal to 0 or not, if it is equal to 0(you can't divide by 0) then there is no inverse, if it is not equal to 0(like in this case I got 6) then it is invertible and the only vector is the zero vector in the kernel. So technically I should stop my calculations at this point and say the zero vector is the only one.
However in the solutions given to use they have an answer that is not a 0 vector.
3b0554f97a.png

1,2,3 are eigenvalues.
How is this possible?

There is no such theorem as the one you state from your lectures. The zero vector is not considered as an eigenvector at all.

There is a theorem stating that if a matrix is invertible (has non-zero determinant) then the only vector (NOT EIGENVECTOR!) in the kernel is the zero vector. That has nothing at all to do with eigenvalues and eigenvectors.

Do you actually know what eigenvalues and eigenvectors are?
 
Ray Vickson said:
There is no such theorem as the one you state from your lectures. The zero vector is not considered as an eigenvector at all.

There is a theorem stating that if a matrix is invertible (has non-zero determinant) then the only vector (NOT EIGENVECTOR!) in the kernel is the zero vector. That has nothing at all to do with eigenvalues and eigenvectors.

Do you actually know what eigenvalues and eigenvectors are?

Oh. Not really. Our lecture notes haven't shown any graphs with vectors on them or any sort of visualisation for this. I just know that there's these things called eigenvectors and eigenvalues that are really useful for some reason.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 5 ·
Replies
5
Views
14K