RW137
- 5
- 0
Einstein published this thought experiment about simultaneity in a popular book with the challenge to explain it in an easy way. However, in my opinion he tried to oversimplify and his explanations turned out to be rather confuse.
I did some thinking about it and here is how I understand the experiment.
Let’s consider two light sources A and B, the midpoint M of the line segment AB and the following events: AM = <<A emits a light signal to M>>, BM = <<B emits a light signal to M>>, MA = <<M receives the signal from A>> and MB = <<M receives the signal from B>>. If you observe that MA and MB happened simultaneously, than you can conclude that the two spatially separated events AM and BM happened simultaneously too (Einstein’s definition). You may imagine two detectors with synchronized clocks at M. Each clock is stopped by the correspondent signal. The clocks show the same time.
Now these devices are mounted on a train and the train moves in the AB direction along an embankment. Whereas the uniform motion does not change the outcome of the experiment for travelers in the train (first postulate), the situation is different for observers on the embankment. In the reference frame of the embankment, M is approaching the signal from B and is fleeing the signal from A. As the velocity of the light does not add to the velocity of the source (second postulate), people on the embankment, who observe the events MA and MB, measure with their synchronized clocks different times at different places. It is according to their clocks that BM happens before AM. It is worth noting that nothing happens to the detector clocks on the train. They still show the same time for everyone, for the observers on the embankment too.
Now some remarks about Einstein’s reasoning.
Einstein draws a figure with A and B on the embankment and on the train. This procedure makes his reasoning difficult to understand. Then he asks a question:
Are two events (e.g. the strokes of lightning A and B) which are simultaneous with reference to the railway embankment also simultaneous relatively to the train?
After defining simultaneity, Einstein should ask a more precise question: do the light signals arrive simultaneously at M for the travelers in the train?
Besides, it is not enough to say that the observer M’ in the train is hastening towards the beam of light coming from B, whilst he is riding on ahead of the beam of light coming from A. The light sources must be moving in order to get relativity in. The difficulty with Einstein’s reasoning is that he does not explain where he makes use of the second postulate.
I did some thinking about it and here is how I understand the experiment.
Let’s consider two light sources A and B, the midpoint M of the line segment AB and the following events: AM = <<A emits a light signal to M>>, BM = <<B emits a light signal to M>>, MA = <<M receives the signal from A>> and MB = <<M receives the signal from B>>. If you observe that MA and MB happened simultaneously, than you can conclude that the two spatially separated events AM and BM happened simultaneously too (Einstein’s definition). You may imagine two detectors with synchronized clocks at M. Each clock is stopped by the correspondent signal. The clocks show the same time.
Now these devices are mounted on a train and the train moves in the AB direction along an embankment. Whereas the uniform motion does not change the outcome of the experiment for travelers in the train (first postulate), the situation is different for observers on the embankment. In the reference frame of the embankment, M is approaching the signal from B and is fleeing the signal from A. As the velocity of the light does not add to the velocity of the source (second postulate), people on the embankment, who observe the events MA and MB, measure with their synchronized clocks different times at different places. It is according to their clocks that BM happens before AM. It is worth noting that nothing happens to the detector clocks on the train. They still show the same time for everyone, for the observers on the embankment too.
Now some remarks about Einstein’s reasoning.
Einstein draws a figure with A and B on the embankment and on the train. This procedure makes his reasoning difficult to understand. Then he asks a question:
Are two events (e.g. the strokes of lightning A and B) which are simultaneous with reference to the railway embankment also simultaneous relatively to the train?
After defining simultaneity, Einstein should ask a more precise question: do the light signals arrive simultaneously at M for the travelers in the train?
Besides, it is not enough to say that the observer M’ in the train is hastening towards the beam of light coming from B, whilst he is riding on ahead of the beam of light coming from A. The light sources must be moving in order to get relativity in. The difficulty with Einstein’s reasoning is that he does not explain where he makes use of the second postulate.