Hi,(adsbygoogle = window.adsbygoogle || []).push({});

I'm trying to work through something and it should be quite simple but somehow i've gotten a bit confused.

I've worked through the Euler Lagrange equations for the lagrangian:

[tex]

\begin{align*}

\mathcal{L}_{0} &= -\frac{1}{4}(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu}) \\

&= \frac{1}{4}F_{\mu\nu}F^{\mu\nu}

\end{align*}

[/tex]

getting:

[tex]\Box A_{\nu} - \partial^{\nu}\partial_{\mu}A^{\mu} = 0[/tex]

I'm ok with this.

Then considering the modified lagrangian:

[tex]\mathcal{L}_{\xi} = \mathcal{L}_{0} + \frac{\lambda}{2}(\partial_{\sigma}A^{\sigma})^2[/tex]

I'm trying to work out the EL equation components and as part of one of these calculations, I've to calculate:

[tex]

\begin{align*}

\frac{\partial}{\partial(\partial_{\mu}A_{\nu})} \left[ \frac{\lambda}{2} (\partial_{\sigma}A^{\sigma})^2 \right]

&= \frac{\lambda}{2} \frac{\partial}{\partial(\partial_{\mu}A_{\nu})} \left[ ( \partial_{\sigma}A^{\sigma} ) ( \partial_{\rho}A^{\rho} ) \right] \\

&= \frac{\lambda}{2} \frac{\partial}{\partial(\partial_{\mu}A_{\nu})} \left[ ( \partial_{\sigma}A_{\alpha} \eta^{\sigma \alpha} ) ( \partial_{\rho}A_{\beta} \eta^{\rho \beta} ) \right] \\

& = \frac{\lambda}{2} \eta^{\sigma \alpha} \eta^{\rho \beta} \frac{\partial}{\partial(\partial_{\mu}A_{\nu})} \left[ ( \partial_{\sigma}A_{\alpha} ) ( \partial_{\rho}A_{\beta} ) \right] \\

& = \frac{\lambda}{2} \eta^{\sigma \alpha} \eta^{\rho \beta} \left[ ( \partial_{\sigma}A_{\alpha} ) \left( \frac{\partial}{\partial(\partial_{\mu}A_{\nu})} ( \partial_{\rho}A_{\beta} ) \right) + \left( \frac{\partial}{\partial(\partial_{\mu}A_{\nu})} ( \partial_{\sigma}A_{\alpha} ) \right) ( \partial_{\rho}A_{\beta} ) \right] \\

& = \frac{\lambda}{2} \eta^{\sigma \alpha} \eta^{\rho \beta} \left[ ( \partial_{\sigma}A_{\alpha} ) \delta^{\mu}_{\rho} \delta^{\nu}_{\beta} + \delta^{\mu}_{\sigma} \delta^{\nu}_{\alpha} ( \partial_{\rho}A_{\beta} ) \right] \\

& = \frac{\lambda}{2} \eta^{\sigma \alpha} \eta^{\rho \beta} ( \partial_{\sigma}A_{\alpha} ) \delta^{\mu}_{\rho} \delta^{\nu}_{\beta}

+

\frac{\lambda}{2} \eta^{\sigma \alpha} \eta^{\rho \beta} \delta^{\mu}_{\sigma} \delta^{\nu}_{\alpha} ( \partial_{\rho}A_{\beta} ) \\

& = \frac{\lambda}{2} \eta^{\sigma \alpha} \eta^{\mu \nu} ( \partial_{\sigma}A_{\alpha} )

+

\frac{\lambda}{2} \eta^{\mu \nu} \eta^{\rho \beta} ( \partial_{\rho}A_{\beta} ) \\

& = \frac{\lambda}{2} \eta^{\mu \nu} \left[ ( \partial_{\sigma}A^{\sigma} )

+

( \partial_{\rho}A^{\rho} ) \right] \\

& = \lambda \eta^{\mu \nu} ( \partial_{\sigma}A^{\sigma} ) \\

\end{align*}

[/tex]

Now I was hoping to get:

[tex]

\lambda \partial^{\nu} A^{\mu}

[/tex]

as ultimately I need the EL equations to give me:

[tex]

\begin{align*}

\frac{\partial \mathcal{L}_{\xi}}{\partial A_{\nu}} - \partial_{\mu} \left( \frac{\partial \mathcal{L}_{\xi}}{\partial (\partial_{\mu} A_{\nu})} \right)

&=\Box A^{\nu} - \partial^{\nu} ( \partial_{\mu} A^{\mu} ) - \lambda \partial^{\nu}(\partial_{\mu} A^{\mu}) \\

&= \Box A^{\nu} - ( 1 + \lambda ) \partial^{\nu} ( \partial_{\mu} A^{\mu} ) \\

&= 0

\end{align*}

[/tex]

Can anyone show me where i've gone wrong? I didn't stick this in the homework section as it's not homework. I'm just trying to work through the through missing steps from the text i'm reading.

Thanks in advance

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# EL Equations for the modified electromagnetic field Lagrangian

Loading...

Similar Threads - Equations modified electromagnetic | Date |
---|---|

I Simplify the Dirac Energy Equation? | Yesterday at 11:18 AM |

I Use the Dirac Equation to calculate transition frequencies in Hydrogen | Mar 6, 2018 |

I Dirac's Equation vs. QFT | Feb 27, 2018 |

Do the wave equations need to be modified for obstacles? | Feb 18, 2012 |

Square of modified Dirac equation | Nov 20, 2011 |

**Physics Forums - The Fusion of Science and Community**