Undergrad Electric field due to polarized object

Click For Summary
SUMMARY

The discussion centers on the conditions necessary for the electric fields of two objects, one polarized and the other with surface and volume charge densities, to be equal. Key equations include the dipole potential formula, given by ##\phi(\mathbf{r}) = \dfrac{\mathbf{p} \cdot \mathbf{r}}{4\pi \epsilon_0 r^3}##, and the integral representation of the dipole potential involving the dipole moment per unit volume ##\mathbf{P} = \dfrac{d\mathbf{p}}{dV}##. The justification for the equality of electric fields is established through standard proofs involving the divergence of the polarization vector and boundary conditions. The discussion concludes with a clear understanding of the relationship between polarization and electric fields.

PREREQUISITES
  • Understanding of electric fields and potentials
  • Familiarity with dipole moments and polarization
  • Knowledge of vector calculus, specifically divergence and integrals
  • Basic concepts of charge density and its implications
NEXT STEPS
  • Study the derivation of the dipole potential in electrostatics
  • Learn about the implications of polarization in dielectric materials
  • Explore the mathematical techniques for evaluating vector integrals in electrostatics
  • Investigate applications of electric fields in real-world scenarios, such as capacitors
USEFUL FOR

Students and professionals in physics, electrical engineering, and materials science, particularly those focusing on electrostatics and electromagnetic theory.

VVS2000
Messages
150
Reaction score
17
TL;DR
So I am given the conditions necessary for the electric field to be equal for given two objects of same size and shape, one of which is polarized and the other has some surface and volume charge densities as shown in the diagram
16377788745095814392662940793349.jpg
16377789157864281810467250891417.jpg
 
Physics news on Phys.org
VVS2000 said:
Summary:: So I am given the conditions necessary for the electric field to be equal for given two objects of same size and shape, one of which is polarized and the other has some surface and volume charge densities as shown in the diagram

View attachment 292998View attachment 292999
So you are. Is there a question you wish to ask?
 
kuruman said:
So you are. Is there a question you wish to ask?
Yeah, they have mentioned the given 2 conditions regarding polarization must be satisfied for electric fields of the given 2 objects to be equal
I still don't know how
 
The justification is a standard proof. You might have come across the potential of a dipole ##\phi(\mathbf{r}) = \dfrac{\mathbf{p} \cdot \mathbf{r}}{4\pi \epsilon_0 r^3}##. Therefore if a material has a dipole moment per unit volume ##\mathbf{P} = \dfrac{d\mathbf{p}}{dV}##, the dipole potential is\begin{align*}
\phi(\mathbf{r}) &= \dfrac{1}{4\pi \epsilon_0} \int_{\mathscr{V}} \dfrac{\mathbf{P}(\mathbf{R}) \cdot (\mathbf{r} - \mathbf{R})}{|\mathbf{r} - \mathbf{R}|^3} d^3 \mathbf{R}
\end{align*}where ##\mathbf{R}## is the integration variable over the source charge distribution (contained with in ##\mathscr{V}##). Letting ##\nabla_{\mathbf{R}} = \left( \frac{\partial}{\partial R_x}, \frac{\partial}{\partial R_y}, \frac{\partial}{\partial R_z} \right)## denote differentiation with respect to the coordinates of ##\mathbf{R}##, notice now that\begin{align*}
\nabla_{\mathbf{R}} \cdot \dfrac{\mathbf{P}(\mathbf{R})}{|\mathbf{r} - \mathbf{R}|} &= \sum_i \dfrac{\partial}{\partial R_i} \dfrac{P_i(\mathbf{R})}{|\mathbf{r} - \mathbf{R}|} \\
&= \sum_i \left[ \dfrac{1}{|\mathbf{r} - \mathbf{R}|} \dfrac{\partial P_i}{\partial R_i} + P_i \dfrac{\partial}{\partial R_i} \dfrac{1}{|\mathbf{r} - \mathbf{R}|} \right] \\
&= \sum_i \left[ \dfrac{1}{|\mathbf{r} - \mathbf{R}|} \dfrac{\partial P_i}{\partial R_i} + P_i \dfrac{(\mathbf{r} - \mathbf{R})_i}{|\mathbf{r} - \mathbf{R}|^3} \right] \\
&= \dfrac{\nabla_{\mathbf{R}} \cdot \mathbf{P}}{|\mathbf{r} - \mathbf{R}|} + \dfrac{\mathbf{P} \cdot (\mathbf{r} - \mathbf{R})}{|\mathbf{r} - \mathbf{R}|^3}
\end{align*}and therefore\begin{align*}
\phi(\mathbf{r}) &= \dfrac{1}{4\pi \epsilon_0} \int_{\mathscr{V}}\left[ \nabla_{\mathbf{R}} \cdot \dfrac{\mathbf{P}}{|\mathbf{r} - \mathbf{R}|} - \dfrac{\nabla_{\mathbf{R}} \cdot \mathbf{P}}{|\mathbf{r} - \mathbf{R}|} \right] d^3 \mathbf{R} \\
&= \dfrac{1}{4\pi \epsilon_0} \int_{\partial \mathscr{V}} \dfrac{\mathbf{P}}{|\mathbf{r} - \mathbf{R}|} \cdot \hat{\mathbf{n}} dS- \dfrac{1}{4\pi \epsilon_0} \int_{\mathscr{V}} \dfrac{\nabla_{\mathbf{R}} \cdot \mathbf{P}}{|\mathbf{r} - \mathbf{R}|} d^3 \mathbf{R} \\

&= \dfrac{1}{4\pi \epsilon_0} \int_{\partial \mathscr{V}} \dfrac{\sigma_{\mathrm{b}}}{|\mathbf{r} - \mathbf{R}|} dS + \dfrac{1}{4\pi \epsilon_0} \int_{\mathscr{V}} \dfrac{\rho_{\mathrm{b}}}{|\mathbf{r} - \mathbf{R}|} d^3 \mathbf{R}
\end{align*}upon defining ##\sigma_{\mathrm{b}} \equiv \mathbf{P} \cdot \hat{\mathbf{n}}## and ##\rho_{\mathrm{b}} \equiv - \nabla_{\mathbf{R}} \cdot \mathbf{P}##.
 
Last edited:
  • Like
Likes Astronuc, berkeman, TSny and 1 other person
ergospherical said:
The justification is a standard proof. You might have come across the potential of a dipole ##\phi(\mathbf{r}) = \dfrac{\mathbf{p} \cdot \mathbf{r}}{4\pi \epsilon_0 r^3}##. Therefore if a material has a dipole moment per unit volume ##\mathbf{P} = \dfrac{d\mathbf{p}}{dV}##, the dipole potential is\begin{align*}
\phi(\mathbf{r}) &= \dfrac{1}{4\pi \epsilon_0} \int_{\mathscr{V}} \dfrac{\mathbf{P}(\mathbf{R}) \cdot (\mathbf{r} - \mathbf{R})}{|\mathbf{r} - \mathbf{R}|^3} d^3 \mathbf{R}
\end{align*}where ##\mathbf{R}## is the integration variable over the source charge distribution (contained with in ##\mathscr{V}##). Letting ##\nabla_{\mathbf{R}} = \left( \frac{\partial}{\partial R_x}, \frac{\partial}{\partial R_y}, \frac{\partial}{\partial R_z} \right)## denote differentiation with respect to the coordinates of ##\mathbf{R}##, notice now that\begin{align*}
\nabla_{\mathbf{R}} \cdot \dfrac{\mathbf{P}(\mathbf{R})}{|\mathbf{r} - \mathbf{R}|} &= \sum_i \dfrac{\partial}{\partial R_i} \dfrac{P_i(\mathbf{R})}{|\mathbf{r} - \mathbf{R}|} \\
&= \sum_i \left[ \dfrac{1}{|\mathbf{r} - \mathbf{R}|} \dfrac{\partial P_i}{\partial R_i} + P_i \dfrac{\partial}{\partial R_i} \dfrac{1}{|\mathbf{r} - \mathbf{R}|} \right] \\
&= \sum_i \left[ \dfrac{1}{|\mathbf{r} - \mathbf{R}|} \dfrac{\partial P_i}{\partial R_i} + P_i \dfrac{(\mathbf{r} - \mathbf{R})_i}{|\mathbf{r} - \mathbf{R}|^3} \right] \\
&= \dfrac{\nabla_{\mathbf{R}} \cdot \mathbf{P}}{|\mathbf{r} - \mathbf{R}|} + \dfrac{\mathbf{P} \cdot (\mathbf{r} - \mathbf{R})}{|\mathbf{r} - \mathbf{R}|^3}
\end{align*}and therefore\begin{align*}
\phi(\mathbf{r}) &= \dfrac{1}{4\pi \epsilon_0} \int_{\mathscr{V}}\left[ \nabla_{\mathbf{R}} \cdot \dfrac{\mathbf{P}}{|\mathbf{r} - \mathbf{R}|} - \dfrac{\nabla_{\mathbf{R}} \cdot \mathbf{P}}{|\mathbf{r} - \mathbf{R}|} \right] d^3 \mathbf{R} \\
&= \dfrac{1}{4\pi \epsilon_0} \int_{\partial \mathscr{V}} \dfrac{\mathbf{P}}{|\mathbf{r} - \mathbf{R}|} \cdot \hat{\mathbf{n}} dS- \dfrac{1}{4\pi \epsilon_0} \int_{\mathscr{V}} \dfrac{\nabla_{\mathbf{R}} \cdot \mathbf{P}}{|\mathbf{r} - \mathbf{R}|} d^3 \mathbf{R} \\

&= \dfrac{1}{4\pi \epsilon_0} \int_{\partial \mathscr{V}} \dfrac{\sigma_{\mathrm{b}}}{|\mathbf{r} - \mathbf{R}|} dS + \dfrac{1}{4\pi \epsilon_0} \int_{\mathscr{V}} \dfrac{\rho_{\mathrm{b}}}{|\mathbf{r} - \mathbf{R}|} d^3 \mathbf{R}
\end{align*}upon defining ##\sigma_{\mathrm{b}} \equiv \mathbf{P} \cdot \hat{\mathbf{n}}## and ##\rho_{\mathrm{b}} \equiv - \nabla_{\mathbf{R}} \cdot \mathbf{P}##.
Wow, now I understood
Thanks
 
  • Like
Likes dlgoff and berkeman

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 1 ·
Replies
1
Views
985
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K