Electric Field Inside a Gaussian Surface with Point Charge q

Click For Summary
The discussion centers on the application of Gauss's law regarding the electric field inside a Gaussian surface with a point charge located outside. It emphasizes that while the electric flux is zero if no net charge is enclosed, this does not imply that the electric field inside the surface is also zero unless there is symmetry in the configuration. The lack of symmetry in the scenario described prevents the conclusion that the electric field must be zero, as the mathematical implications of Gauss's law do not hold without symmetry. The conversation highlights a common misunderstanding among students regarding the relationship between electric flux and electric field strength. Understanding the necessity of symmetry in applying Gauss's law is crucial for accurate interpretations in electrostatics.
Jaccobtw
Messages
163
Reaction score
32
Homework Statement
Gauss's Law States that if there is no charge enclosed by a gaussian surface, then the electric field must be zero. But how is this the case?
Relevant Equations
E = q/A##\epsilon_o##
If I have a point charge q right outside of a gaussian surface, it makes sense that the flux is zero inside the surface because the electric field going in equals the electric field going out. However, how would the electric field be zero inside? Wouldn't it just take on the electric field of that area in space relative to the point charge q?
 
Physics news on Phys.org
Gauss's law states that if there is no net charge enclosed by a gaussian surface then the electric flux is zero (and not that the electric field is zero).

If there is no net charge inside, and hence the flux is zero, then we can deduce that the e-field is zero ONLY IF there is some additional symmetry argument. The situation you describe with the charge outside a gaussian surface is not symmetrical, hence mathematically what happens is that from $$\oint \vec{E}\cdot d\vec{S}=0$$ we can NOT deduce that $$\vec{E}=0$$ because there is no symmetry that would allow us to get the ##\vec{E}## outside of the flux integral, so the following implication $$\oint \vec{E}\cdot d\vec{S}=0\Rightarrow \vec{E}\cdot\oint d\vec{S}=0\Rightarrow \vec{E}=0$$ simply is NOT valid mathematically.
 
Last edited:
  • Like
Likes Orodruin and Jaccobtw
Delta2 said:
Gauss's law states that if there is no net charge enclosed by a gaussian surface then the electric flux is zero (and not that the electric field is zero).

If there is no net charge inside, and hence the flux is zero, then we can deduce that the e-field is zero ONLY IF there is some additional symmetry argument. The situation you describe with the charge outside a gaussian surface is not symmetrical, hence mathematically what happens is that from $$\iint \vec{E}\cdot d\vec{S}=0$$ we can NOT deduce that $$\vec{E}=0$$ because there is no symmetry that would allow us to get the ##\vec{E}## outside of the flux integral, so the following implication $$\iint \vec{E}\cdot d\vec{S}=0\Rightarrow \vec{E}\cdot\iint d\vec{S}=0\Rightarrow \vec{E}=0$$ simply is NOT valid mathematically.
Why did you use double integrals?
 
Jaccobtw said:
Why did you use double integrals?
Well, the flux integral is a surface integral and so its usually a double integral, but you maybe right, I should have used the $$\oint$$ which means surface integral over a closed surface. I will edit my post shortly.

That is not the main point of this btw, the main point is that there is no symmetry in the situation you describe.
 
Delta2 said:
Gauss's law states that if there is no net charge enclosed by a gaussian surface then the electric flux is zero (and not that the electric field is zero).

If there is no net charge inside, and hence the flux is zero, then we can deduce that the e-field is zero ONLY IF there is some additional symmetry argument. The situation you describe with the charge outside a gaussian surface is not symmetrical, hence mathematically what happens is that from $$\oint \vec{E}\cdot d\vec{S}=0$$ we can NOT deduce that $$\vec{E}=0$$ because there is no symmetry that would allow us to get the ##\vec{E}## outside of the flux integral, so the following implication $$\oint \vec{E}\cdot d\vec{S}=0\Rightarrow \vec{E}\cdot\oint d\vec{S}=0\Rightarrow \vec{E}=0$$ simply is NOT valid mathematically.
This point is way too little emphazised in most treatments and a very common source of misunderstanding among students. The usual takeaway from the typical example of a spherical symmetry is ”oh, EA = enclosed charge/epsilon, very convenient” and the symmetry argument preceeding the statement is often forgotten. It needs to be hammered in.
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 18 ·
Replies
18
Views
3K
Replies
23
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
11
Views
3K
Replies
9
Views
2K
Replies
9
Views
444
  • · Replies 14 ·
Replies
14
Views
976
Replies
12
Views
1K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K