Electric Field Inside a Gaussian Surface with Point Charge q

Click For Summary

Homework Help Overview

The discussion revolves around the application of Gauss's law in the context of electric fields and flux related to a point charge located outside a Gaussian surface. Participants explore the implications of having no net charge enclosed by the surface and the resulting electric field behavior.

Discussion Character

  • Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants examine the relationship between electric flux and electric field, questioning how the electric field can be zero inside the Gaussian surface when a point charge is nearby. Some emphasize the need for symmetry to draw conclusions about the electric field from the flux integral.

Discussion Status

The discussion is active, with participants providing insights on the mathematical implications of Gauss's law. There is a focus on the necessity of symmetry in the argument and recognition of common misunderstandings related to the application of the law.

Contextual Notes

Some participants note the importance of emphasizing symmetry in discussions of Gauss's law, suggesting that this aspect is often overlooked in educational contexts.

Jaccobtw
Messages
163
Reaction score
32
Homework Statement
Gauss's Law States that if there is no charge enclosed by a gaussian surface, then the electric field must be zero. But how is this the case?
Relevant Equations
E = q/A##\epsilon_o##
If I have a point charge q right outside of a gaussian surface, it makes sense that the flux is zero inside the surface because the electric field going in equals the electric field going out. However, how would the electric field be zero inside? Wouldn't it just take on the electric field of that area in space relative to the point charge q?
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
Gauss's law states that if there is no net charge enclosed by a gaussian surface then the electric flux is zero (and not that the electric field is zero).

If there is no net charge inside, and hence the flux is zero, then we can deduce that the e-field is zero ONLY IF there is some additional symmetry argument. The situation you describe with the charge outside a gaussian surface is not symmetrical, hence mathematically what happens is that from $$\oint \vec{E}\cdot d\vec{S}=0$$ we can NOT deduce that $$\vec{E}=0$$ because there is no symmetry that would allow us to get the ##\vec{E}## outside of the flux integral, so the following implication $$\oint \vec{E}\cdot d\vec{S}=0\Rightarrow \vec{E}\cdot\oint d\vec{S}=0\Rightarrow \vec{E}=0$$ simply is NOT valid mathematically.
 
Last edited:
  • Like
Likes   Reactions: Orodruin and Jaccobtw
Delta2 said:
Gauss's law states that if there is no net charge enclosed by a gaussian surface then the electric flux is zero (and not that the electric field is zero).

If there is no net charge inside, and hence the flux is zero, then we can deduce that the e-field is zero ONLY IF there is some additional symmetry argument. The situation you describe with the charge outside a gaussian surface is not symmetrical, hence mathematically what happens is that from $$\iint \vec{E}\cdot d\vec{S}=0$$ we can NOT deduce that $$\vec{E}=0$$ because there is no symmetry that would allow us to get the ##\vec{E}## outside of the flux integral, so the following implication $$\iint \vec{E}\cdot d\vec{S}=0\Rightarrow \vec{E}\cdot\iint d\vec{S}=0\Rightarrow \vec{E}=0$$ simply is NOT valid mathematically.
Why did you use double integrals?
 
Jaccobtw said:
Why did you use double integrals?
Well, the flux integral is a surface integral and so its usually a double integral, but you maybe right, I should have used the $$\oint$$ which means surface integral over a closed surface. I will edit my post shortly.

That is not the main point of this btw, the main point is that there is no symmetry in the situation you describe.
 
  • Like
Likes   Reactions: Jaccobtw
Delta2 said:
Gauss's law states that if there is no net charge enclosed by a gaussian surface then the electric flux is zero (and not that the electric field is zero).

If there is no net charge inside, and hence the flux is zero, then we can deduce that the e-field is zero ONLY IF there is some additional symmetry argument. The situation you describe with the charge outside a gaussian surface is not symmetrical, hence mathematically what happens is that from $$\oint \vec{E}\cdot d\vec{S}=0$$ we can NOT deduce that $$\vec{E}=0$$ because there is no symmetry that would allow us to get the ##\vec{E}## outside of the flux integral, so the following implication $$\oint \vec{E}\cdot d\vec{S}=0\Rightarrow \vec{E}\cdot\oint d\vec{S}=0\Rightarrow \vec{E}=0$$ simply is NOT valid mathematically.
This point is way too little emphazised in most treatments and a very common source of misunderstanding among students. The usual takeaway from the typical example of a spherical symmetry is ”oh, EA = enclosed charge/epsilon, very convenient” and the symmetry argument preceeding the statement is often forgotten. It needs to be hammered in.
 
  • Like
Likes   Reactions: SammyS

Similar threads

  • · Replies 18 ·
Replies
18
Views
3K
Replies
23
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
11
Views
3K
Replies
9
Views
2K
Replies
9
Views
932
  • · Replies 14 ·
Replies
14
Views
1K
Replies
12
Views
1K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K