Electric potential at the center of a insulating sphere

In summary: , it has clarified a lot for me. yes, i get the same answer from your (simplified) solution and the same from the two integrals i set up however my problem was i did not set up the limits of integration correctly hence the negative sign.
  • #1
SpringWater
27
0

Homework Statement



Consider a uniformly charged insulating sphere with radius R and total charge Q in- side the sphere.

If Q = 2.9 × 10−6 C, what is the magnitude of the electric field at r=R/2 K=columbs constant. The answer to this question is E=(K)(Q) / (2)*(R)^(2)

The second part of the question which I am having trouble with is...

If the sphere has a radius of 3.3 m, find the potential at r = 0. The Coulomb constant is 8.98764 × 109 N · m2/C2 . Follow the convention that the electric potential at r = ∞ is zero. answer in units of V

Homework Equations


Q=2.9E-6 C
r=3.3m
k=8.98764E9 N*m^2 / C^2


The Attempt at a Solution



So I have set up the problem as two integrals

that are shown in the picture. I thought that this would give me the electric potential at r=0 however i am still getting it incorrect. I am not sure what I am doing wrong any help would be appreciated.
Thank you,
 

Attachments

  • hw7 #12.jpg
    hw7 #12.jpg
    16.2 KB · Views: 1,123
Physics news on Phys.org
  • #2
Have you tried using the fact that the potential inside a spherical shell is constant and is equal to the potential on its surface?
 
  • #3
Sunil Simha said:
Have you tried using the fact that the potential inside a spherical shell is constant and is equal to the potential on its surface?


I understood that concept but i guess because this was a two part problem i was trying to incorporate an integral that would relate to the first part of the problem, so no i really didnt...

..in that case the electric potential on the surface would be = (K)*(Q) / (R) Correct?

where R is the radius of the sphere and R=3.3 m
 
  • #4
SpringWater said:
I understood that concept but i guess because this was a two part problem i was trying to incorporate an integral that would relate to the first part of the problem, so no i really didnt...

..in that case the electric potential on the surface would be = (K)*(Q) / (R) Correct?

where R is the radius of the sphere and R=3.3 m

no this is incorrect, so looking back at my integral, i am more sure that my set up was correct, in the orignal post w/ picture. the question now i believe is the sign (-) or (+)?
 
  • #5
The second part can be solved by assuming the sphere to be made of thin concentric spherical shell of uniform charge densities. Every shell contributes a potential equal to that on it's surface. The solution is simply obtained by integrating the potentials. Note that Q is evenly distributed throughout the sphere and hence it helps to assign a constant as charge density and then use it.
 
Last edited:
  • #6
Sunil Simha said:
The second part can be solved by assuming the sphere to be made of thin concentric spherical shell of uniform charge densities. Every shell contributes a potential equal to that on it's surface. The solution is simply obtained by integrating the potentials.

okay, thank you for the reply i greatly appreciate it.

using the integrals i set up, after simplifying the two i obtain -((3)*(k)*(Q) / (2)*(R)) which is a similar formula i just found a min ago however there formula did not have a negative sign. so why when my method is correct, do i come up with a negative sign assuming that the integral sums up the shells.
 
  • #7
I'm a bit confused about how you got your limits of integration. Would you mind explaining? What is the final answer to this problem, by the way?
 
  • #8
Averki said:
I'm a bit confused about how you got your limits of integration. Would you mind explaining? What is the final answer to this problem, by the way?


well i set them up incorrectly that is why i kept coming up with a negative answer. see picture for how i switched them. the worked integral is in the first attached picture however the answer should be positive.
 
Last edited:
  • #9
Is the answer 3Q/8πεR? If correct I'll explain my method, else I'll check what I've done wrong and later suggest a solution.
 
  • #10
SpringWater said:
well i set them up incorrectly that is why i kept coming up with a negative answer. see picture for how i switched them. the worked integral is in the first attached picture however the answer should be positive.

sorry i forgot the picture.
 

Attachments

  • number 12 part two hw 7.jpg
    number 12 part two hw 7.jpg
    15.6 KB · Views: 1,081
  • #11
Sunil Simha said:
Is the answer [itex]\frac{3Q}{8πεR}[/itex]. If correct I'll explain my method, else I'll check what I've done wrong and later suggest a solution.

yes, i get the same answer from your (simplified) solution and the same from the two integrals i set up however my problem was i did not set up the limits of integration correctly hence the negative sign.

thank you for your help
 

1. What is the electric potential at the center of an insulating sphere?

The electric potential at the center of an insulating sphere is zero. This is because the electric potential is defined as the amount of work required to bring a unit positive charge from infinity to a certain point. Since the center of the sphere is equidistant from all points on the surface, the electric potential cancels out due to the symmetry of the sphere.

2. How does the electric potential at the center of an insulating sphere differ from that of a conducting sphere?

The electric potential at the center of a conducting sphere is also zero. However, this is because the charges on a conducting sphere are free to move and will redistribute themselves in such a way that the electric potential at all points on the surface is the same. This results in a uniform electric potential inside the sphere, including at the center.

3. Can the electric potential at the center of an insulating sphere be changed?

No, the electric potential at the center of an insulating sphere cannot be changed. As mentioned before, the symmetry of the sphere results in a cancellation of electric potential at the center. This means that no matter how much charge is placed on the surface of the sphere, the electric potential at the center will remain zero.

4. Is the electric potential at the center of an insulating sphere affected by the size of the sphere?

No, the electric potential at the center of an insulating sphere is not affected by the size of the sphere. As long as the sphere is perfectly symmetrical, the electric potential at the center will always be zero. The size of the sphere only affects the magnitude of the electric potential on the surface.

5. How is the electric potential at the center of an insulating sphere related to the charge on the surface?

The electric potential at the center of an insulating sphere is not directly related to the charge on the surface. As long as the sphere is symmetrical, the electric potential at the center will remain zero regardless of the amount of charge on the surface. However, the charge on the surface does affect the electric potential at other points on the surface of the sphere.

Similar threads

Replies
1
Views
117
  • Introductory Physics Homework Help
Replies
11
Views
3K
Replies
22
Views
1K
  • Introductory Physics Homework Help
Replies
17
Views
379
  • Introductory Physics Homework Help
Replies
23
Views
336
  • Introductory Physics Homework Help
Replies
1
Views
869
  • Introductory Physics Homework Help
Replies
2
Views
350
  • Introductory Physics Homework Help
Replies
6
Views
135
  • Introductory Physics Homework Help
Replies
6
Views
657
  • Introductory Physics Homework Help
Replies
1
Views
1K
Back
Top