Electric Potential due to two charges

Click For Summary
SUMMARY

The electric potential due to two point charges, +3.0-μC at (0.0 m, 0.0 m) and -4.0-μC at (2.0 m, 0.0 m), is zero at a single point located at x = 6/7 m on the horizontal line y = 0.0. The equation used to determine this was V(total) = k(q1/r1 + q2/r2) = 0, leading to the conclusion that there is no other point where the potential is zero. The analysis confirms that the potential remains zero only at this calculated position, as any other configurations yield the same result.

PREREQUISITES
  • Understanding of electric potential and point charges
  • Familiarity with the equation V(r) = kq/r
  • Knowledge of the concept of distance in relation to electric fields
  • Ability to manipulate algebraic equations for solving physics problems
NEXT STEPS
  • Explore the concept of electric fields generated by point charges
  • Learn about superposition principles in electrostatics
  • Investigate the effects of multiple charges on electric potential
  • Study the implications of charge distribution on electric potential in different geometries
USEFUL FOR

Students studying electromagnetism, physics educators, and anyone interested in understanding electric potential in systems with multiple charges.

Mnemonic
Messages
21
Reaction score
0

Homework Statement


Two point charges are placed on a horizontal line, the first is +3.0-μC located at x = 0.0-m, y = 0.0-m and the second is -4.0-μC located at x = 2.0-m, y = 0.0-m. At what points on the horizontal line y = 0.0 will the electric potential be zero?

Homework Equations


V(r)=kq/r

The Attempt at a Solution


V(total)=kq1/r1+kq2/r2=0

k(q1/r1+q2/r2)=0

k(3e-6/x-4e-6/(2-x)=0

x=6/7

So there should be no electric potential at x=6/7metres. Is that the only point?
 
Last edited:
Physics news on Phys.org
Mnemonic said:

Homework Statement


Two point charges are placed on a horizontal line, the first is +3.0-μC located at x = 0.0-m, y = 0.0-m and the second is -4.0-μC located at x = 2.0-m, y = 0.0-m. At what points on the horizontal line y = 0.0 will the electric potential be zero?

Homework Equations


V(r)=kq/r

The Attempt at a Solution


V(total)=kq1/r1+kq2/r2=0

k(q1/r1+q2/r2)=0

k(3e-6/x-4e-6/(2-x)=0

x=6/7

So there should be no electric potential at x=6/7metres. Is that the only point?

Your work looks correct . Yes, there is only one point at which potential is zero.
 
  • Like
Likes   Reactions: Mnemonic
Mnemonic said:
k(q1/r1+q2/r2)=0
k(3e-6/x-4e-6/(2-x)=0
Not quite correct --- you'll want to look at how you've defined "r2."
 
Would I get another valid answer if I first used:

k(3e-6/x-4e-6/(2-x)=0

then used:

k(3e-6/(2-x)-4e-6/x=0
?
 
Mnemonic said:
Would I get another valid answer if I first used:

k(3e-6/x-4e-6/(2-x)=0

then used:

k(3e-6/(2-x)-4e-6/x=0
?

No . The answer would remain same i.e point of zero potential will be at a distance (6/7)m from +3.0-μC .

In the latter case ,you are taking 'x' to be the distance of point of zero potential from -4.0-μC .Here you will get x=(8/7)m .Again this point will be at a distance (2-x) i.e (6/7)m from +3.0-μC .

The answer remains same .
 
  • Like
Likes   Reactions: Mnemonic
You have two charges, opposite in sign, separated by a distance of two meters; at all points on the two meter line segment between those two opposite sign charges there is a non-zero force on any non-zero test charge resulting from the simultaneous attraction and repulsion of the test charge by the two given charges.
 
@Mnemonic ,

There is something more you need to do . There might be another solution to this problem.

Consider a point to the left of +3.0-μC at a distance 'x' . Apply the appropriate condition , as you did in the OP .What do you get ?
 
  • Like
Likes   Reactions: Mnemonic
Mnemonic said:

Homework Equations


V(r)=kq/r

The Attempt at a Solution


V(total)=kq1/r1+kq2/r2=0

k(q1/r1+q2/r2)=0

k(3e-6/x-4e-6/(2-x)=0

Remember, r is the distance from the charge, a positive quantity. x is the position along the x axis. If x is positive, 2-x can be both positive and negative, You need to take the absolute value. x can be also negative. So you have to take the absolute values r1=|x|, r2=|2-x|.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
3K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
64
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K