Electric potential of nested spherical shells

Click For Summary
SUMMARY

The discussion focuses on calculating the electric potential of nested spherical shells using Gauss's law. For the region between the shells, the electric field is given by ##\vec E=\frac{kQ}{r^2}\hat r##, leading to the potential equation ##V(r)=kQ\left(\frac{1}{b}-\frac{1}{r}\right)##. A common mistake identified is the incorrect use of the negative sign in the integral for electric potential. The correct approach requires recognizing the direction of the electric field and adjusting the integral accordingly.

PREREQUISITES
  • Understanding of Gauss's law and its application to electric fields.
  • Familiarity with electric potential and its mathematical representation.
  • Knowledge of vector calculus, particularly line integrals.
  • Concept of electric fields generated by point charges and spherical shells.
NEXT STEPS
  • Study the derivation of electric potential from electric fields using line integrals.
  • Learn about the implications of electric field direction on potential calculations.
  • Explore the concept of electric potential in multi-charge systems, particularly with spherical symmetry.
  • Investigate the differences between potential due to point charges and continuous charge distributions.
USEFUL FOR

Students of physics, electrical engineers, and anyone interested in electrostatics and electric potential calculations in nested spherical systems.

songoku
Messages
2,508
Reaction score
393
Homework Statement
Two concentric spherical shells have equal but opposite charges. One spherical has radius ##a## and charge ##Q## while the other has radius ##b## and charge ##-Q## where ##b > a##. Find ##V(r)-V(\infty)## for the region:
(a) ##r>b##
(b) ##a<r<b##
(c) ##0<r<a##
Relevant Equations
##V=\frac{kQ}{r}##
##V_A - V_B=-\int^{a}_{b} \vec E. d\vec s##
##\int \vec E . d\vec A=\frac{q_{in}}{\epsilon_0}##
For (a), I got ##V(r)=0##

For (b), using Gauss law I get the electric field in the region to be ##\vec E=\frac{kQ}{r^2}\hat r##, then:

$$V(r)-V(b)=-\int^{r}_{b} \left(\frac{kQ}{r^2}\hat r\right) . (-dr ~\hat r)$$
$$V(r)-0=\int^{r}_{b} \frac{kQ}{r^2} dr$$
$$V(r)=kQ\left(\frac{1}{b}-\frac{1}{r}\right)$$

But if I imagine both charges to be point charges, then:
$$V(r)=V_{\text{by +Q}}+V_{\text{by -Q}}$$
$$=kQ\left(\frac{1}{r}-\frac{1}{b}\right)$$

Where is my mistake?

Thanks
 
Physics news on Phys.org
songoku said:
For (b), using Gauss law I get the electric field in the region to be ##\vec E=\frac{kQ}{r^2}\hat r##, then:

$$V(r)-V(b)=-\int^{r}_{b} \left(\frac{kQ}{r^2}\hat r\right) . (-dr ~\hat r)$$
In the integrand, you should not have the negative sign in ##(-dr ~\hat r)##. Instead, ##\vec{dr} = dr ~\hat r##. Note that ##dr## is a negative quantity since you are integrating from a larger value of ##r## to a smaller value of ##r##.

Considering the direction of the electric field between the shells, do you expect ##V(r) - V(b)## to be positive or negative for ##a < r < b##? Does your answer agree with this expectation?
 
  • Like
Likes   Reactions: songoku
TSny said:
In the integrand, you should not have the negative sign in ##(-dr ~\hat r)##. Instead, ##\vec{dr} = dr ~\hat r##. Note that ##dr## is a negative quantity since you are integrating from a larger value of ##r## to a smaller value of ##r##.
Ah I see
TSny said:
Considering the direction of the electric field between the shells, do you expect ##V(r) - V(b)## to be positive or negative for ##a < r < b##? Does your answer agree with this expectation?
The direction of electric field in this case is radially outward so I expect ##V(r)-V(b)## to be positive. My first answer does not fit, my second answer fits.

I have another question. How to find potential at ##r=a##? I did 2 attempts:
(1)
$$V(a)-V(\infty)=-\int^{a}_{\infty} \frac{kQ}{r^2}dr$$
$$V(a)-0=\frac{kQ}{a}$$
$$V(a)=\frac{kQ}{a}$$

(2)
$$V(a)-V(b)=-\int^{a}_{b} \frac{kQ}{r^2}dr$$
$$V(a)-0=kQ\left(\frac{1}{a}-\frac{1}{b}\right)$$
$$V(a)=kQ\left(\frac{1}{a}-\frac{1}{b}\right)$$

By considering both of them as point charges at the center, my answer matches the second one but I don't really understand why (1) is wrong.

Equation from (1) is like a situation where there is just one charge ##Q##. Since point ##a## is also inside another spherical shell so we can't consider the work done to move a charge from infinity to ##a## but need to consider the boundary of the larger shell?

Thanks
 
songoku said:
Ah I see

The direction of electric field in this case is radially outward so I expect ##V(r)-V(b)## to be positive.
Yes.

songoku said:
I have another question. How to find potential at ##r=a##? I did 2 attempts:
(1)
$$V(a)-V(\infty)=-\int^{a}_{\infty} \frac{kQ}{r^2}dr$$
Write $$V(a)-V(\infty)=-\int^{a}_{\infty} \vec E_{net} \cdot \vec{dr} = -\int^{b}_{\infty} \vec E_{net} \cdot \vec{dr} -\int^{a}_{b} \vec E_{net} \cdot \vec{dr}$$ Think about what to substitute for ##\vec E_{net}## in each integral on the far right.
 
  • Like
Likes   Reactions: songoku
Thank you very much TSny
 

Similar threads

Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
2
Views
1K
Replies
8
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 22 ·
Replies
22
Views
4K
Replies
12
Views
1K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 10 ·
Replies
10
Views
1K