Electric potential of nested spherical shells

AI Thread Summary
The discussion revolves around calculating the electric potential of nested spherical shells using Gauss's law. The initial calculations for the potential at different points reveal a misunderstanding regarding the integration limits and the direction of the electric field. Corrections highlight that the negative sign in the integrand was misplaced, affecting the expected sign of the potential difference. Two methods for finding the potential at a specific radius yield different results, with the second method being correct as it considers the influence of the surrounding shells. The conversation concludes with a suggestion to properly account for the electric field contributions from all relevant charges when integrating.
songoku
Messages
2,469
Reaction score
382
Homework Statement
Two concentric spherical shells have equal but opposite charges. One spherical has radius ##a## and charge ##Q## while the other has radius ##b## and charge ##-Q## where ##b > a##. Find ##V(r)-V(\infty)## for the region:
(a) ##r>b##
(b) ##a<r<b##
(c) ##0<r<a##
Relevant Equations
##V=\frac{kQ}{r}##
##V_A - V_B=-\int^{a}_{b} \vec E. d\vec s##
##\int \vec E . d\vec A=\frac{q_{in}}{\epsilon_0}##
For (a), I got ##V(r)=0##

For (b), using Gauss law I get the electric field in the region to be ##\vec E=\frac{kQ}{r^2}\hat r##, then:

$$V(r)-V(b)=-\int^{r}_{b} \left(\frac{kQ}{r^2}\hat r\right) . (-dr ~\hat r)$$
$$V(r)-0=\int^{r}_{b} \frac{kQ}{r^2} dr$$
$$V(r)=kQ\left(\frac{1}{b}-\frac{1}{r}\right)$$

But if I imagine both charges to be point charges, then:
$$V(r)=V_{\text{by +Q}}+V_{\text{by -Q}}$$
$$=kQ\left(\frac{1}{r}-\frac{1}{b}\right)$$

Where is my mistake?

Thanks
 
Physics news on Phys.org
songoku said:
For (b), using Gauss law I get the electric field in the region to be ##\vec E=\frac{kQ}{r^2}\hat r##, then:

$$V(r)-V(b)=-\int^{r}_{b} \left(\frac{kQ}{r^2}\hat r\right) . (-dr ~\hat r)$$
In the integrand, you should not have the negative sign in ##(-dr ~\hat r)##. Instead, ##\vec{dr} = dr ~\hat r##. Note that ##dr## is a negative quantity since you are integrating from a larger value of ##r## to a smaller value of ##r##.

Considering the direction of the electric field between the shells, do you expect ##V(r) - V(b)## to be positive or negative for ##a < r < b##? Does your answer agree with this expectation?
 
TSny said:
In the integrand, you should not have the negative sign in ##(-dr ~\hat r)##. Instead, ##\vec{dr} = dr ~\hat r##. Note that ##dr## is a negative quantity since you are integrating from a larger value of ##r## to a smaller value of ##r##.
Ah I see
TSny said:
Considering the direction of the electric field between the shells, do you expect ##V(r) - V(b)## to be positive or negative for ##a < r < b##? Does your answer agree with this expectation?
The direction of electric field in this case is radially outward so I expect ##V(r)-V(b)## to be positive. My first answer does not fit, my second answer fits.

I have another question. How to find potential at ##r=a##? I did 2 attempts:
(1)
$$V(a)-V(\infty)=-\int^{a}_{\infty} \frac{kQ}{r^2}dr$$
$$V(a)-0=\frac{kQ}{a}$$
$$V(a)=\frac{kQ}{a}$$

(2)
$$V(a)-V(b)=-\int^{a}_{b} \frac{kQ}{r^2}dr$$
$$V(a)-0=kQ\left(\frac{1}{a}-\frac{1}{b}\right)$$
$$V(a)=kQ\left(\frac{1}{a}-\frac{1}{b}\right)$$

By considering both of them as point charges at the center, my answer matches the second one but I don't really understand why (1) is wrong.

Equation from (1) is like a situation where there is just one charge ##Q##. Since point ##a## is also inside another spherical shell so we can't consider the work done to move a charge from infinity to ##a## but need to consider the boundary of the larger shell?

Thanks
 
songoku said:
Ah I see

The direction of electric field in this case is radially outward so I expect ##V(r)-V(b)## to be positive.
Yes.

songoku said:
I have another question. How to find potential at ##r=a##? I did 2 attempts:
(1)
$$V(a)-V(\infty)=-\int^{a}_{\infty} \frac{kQ}{r^2}dr$$
Write $$V(a)-V(\infty)=-\int^{a}_{\infty} \vec E_{net} \cdot \vec{dr} = -\int^{b}_{\infty} \vec E_{net} \cdot \vec{dr} -\int^{a}_{b} \vec E_{net} \cdot \vec{dr}$$ Think about what to substitute for ##\vec E_{net}## in each integral on the far right.
 
Thank you very much TSny
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top