- #1
Glenn G
- 113
- 12
Hello community.
I have a question about electrical heating. I am familiar with the fact that textbooks explain how power losses are reduced by transmitting at high V and low I since P = I^2 X R (equation from Ohm's law and P=I X V)
But if you use a different sub for P = I V then you get P = V^2 / R ... So this would suggest high V gives a high heating effect. How would you describe the apparent contradiction here? My take is that the power output is fixed because it depends on the input and as such you will, with a step up transformer get a low I and high V and therefore lower I^2 R, but I don't get why we are precluded from using P=V^2/R for explaining power losses as this clearly gives the opposite conclusion.
Kind regards,
Glenn
I have a question about electrical heating. I am familiar with the fact that textbooks explain how power losses are reduced by transmitting at high V and low I since P = I^2 X R (equation from Ohm's law and P=I X V)
But if you use a different sub for P = I V then you get P = V^2 / R ... So this would suggest high V gives a high heating effect. How would you describe the apparent contradiction here? My take is that the power output is fixed because it depends on the input and as such you will, with a step up transformer get a low I and high V and therefore lower I^2 R, but I don't get why we are precluded from using P=V^2/R for explaining power losses as this clearly gives the opposite conclusion.
Kind regards,
Glenn