Electromagnetic force on a positively charged particle

AI Thread Summary
The discussion focuses on deriving the net force acting on a positively charged particle due to electromagnetic fields. Participants emphasize the importance of expressing the vectors involved in unit vector notation. The Lorentz force equation is highlighted as a key tool for calculating the net force. The magnitude of the force can be determined by taking the square root of the sum of the squared components. This approach is essential for accurately analyzing the effects of the electromagnetic force on the charged particle.
Sat-P
Messages
53
Reaction score
4
New user has been reminded to use LaTeX instead of posting illegible sideways pictures of their math work
Homework Statement
It's not a question, but this is something I tried to derive using the Lorentz force equation on a charged particle.
Relevant Equations
F= qE + qv×B
17223148842797577208539852194008.jpg
 
Physics news on Phys.org
Please state what exactly you are trying to derive.
 
Magnitude of the net force acting on the charged particle due to both fields
 
Sat-P said:
Magnitude of the net force acting on the charged particle due to both fields
Then I suggest that you write each of the vectors involved in unit vector notation, add them to get the Lorentz force as per the equation you posted and finally find its magnitude. It will be the square root of the sum of the components squared and will depend on how you chose the three vectors.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top