- #1

tazzzdo

- 47

- 0

## Homework Statement

Use the integral form and symmetry arguments to compute the electric field produced by the following charge densities:

(i) Point charge q, placed at the origin, in 3 dimensions;

(ii) Point charge q, placed at the origin, in 2 dimensions;

(iii) Point charge q, placed at the origin, in 1 dimension;

(iv) Sphere of charge Q, with center at the origin, in 3 dimensions;

(v) Sphere of charge Q, with center at the origin, in 6 dimensions;

## Homework Equations

[itex]\vec{E}[/itex] and [itex]\vec{B}[/itex] are the electrical and magnetic vector fields, respectively

Maxwell's Equations (with all constants set to 1):

[itex]\vec{\nabla}[/itex] [itex]\times[/itex] [itex]\vec{E}[/itex] = -[itex]\partial[/itex][itex]\vec{B}[/itex]/[itex]\partial[/itex]t

[itex]\vec{\nabla}[/itex] [itex]\times[/itex] [itex]\vec{B}[/itex] = [itex]\partial[/itex][itex]\vec{E}[/itex]/[itex]\partial[/itex]t + [itex]\vec{j}[/itex]

[itex]\vec{\nabla}[/itex] [itex]\cdot[/itex] [itex]\vec{E}[/itex] = [itex]\rho[/itex]

[itex]\vec{\nabla}[/itex] [itex]\cdot[/itex] [itex]\vec{B}[/itex] = 0

## The Attempt at a Solution

No idea how to even set it up. I'm a Math major taking Vector Calculus, Physics is not my cup of tea lol.

Last edited: