- #1
Sean1218
- 86
- 0
Homework Statement
How much work is required in moving Q3 to infinity while Q1 and Q2 remain in their positions?
Q3-------a-------|
|-----------------| b
Q1-------------Q2
a = 16.0 cm
b = 6.0 cm
Q1 = 5.70 μC
Q2 = -5.70 μC
Q3 = 1.8 μC
Homework Equations
W=ΔPE
PE=kQ1Q2/r
The Attempt at a Solution
Just added the potential energies associated with Q3 which is the work needed to move Q3 to infinity (i.e. bring said potential energies to 0).
kQ1Q3/r13 + kQ2Q3/r23
=(8.9875e9)(5.7e(-6))(1.80e(-6))/0.06 + (8.9875e9)(-5.7e(-6))(1.8e(-6))/sqrt(0.06^2 + 0.16^2)
=0.997 J
Also tried calculating ΔPE = final - initial (I think I messed up the formula, but somehow I got the negative of the first one)
(8.9875e9)(5.7e(-6))(-5.7e(-6))/.16 + 0.827790168702400828475759973771078927721678492943077184393)
= -0.997 J
Trying ΔPE again:
kQ1Q2/r12 - (kQ1Q3/r13 + kQ2Q3/r23 + kQ1Q2/r12)
=-kQ1Q3/r13 - kQ2Q3/r23
=-(8.9875e9)(5.7e(-6))(1.8e(-6))/0.06 - (8.9875e9)(-5.7e(-6))(1.8e(-6))/sqrt(0.06^2 + 0.16^2)
= -0.997 J
What am I supposed to do? Neither of these work.