- 15

- 0

_{nn'}for a quantum well:

Knowing that M'

_{nn'}=[tex]\int[/tex][tex]\varphi[/tex]

^{*}

_{en'}(z).[tex]\varphi[/tex]

_{hn}(z).dz

=> How can I show that M

_{nn'}is unity if n=n' and zero otherwise (in a quantum well with

**infinite**barriers) ?

=> How can I show that M

_{nn'}is zero if (n-n') is an odd number in a quantum well with

**finite**barriers) ?

Thanks a lot

S.