- #1

abstracted6

- 39

- 0

## Homework Statement

The width of the potential well of an electron can be assumed to be 2angstrom. Calculate the energy of an electron (in joules and eV) from this information for various values of n.

I believe I have messed up my units somewhere in the final calculation, but I have included everything before that anyways.

For eV where n=1 the book says the answer is 9.39eV, however I'm getting 2.34675(10^20).

## Homework Equations

[tex]\nabla^2\psi+\frac{2m}{\hbar^2}(E-V)\psi=0[/tex]

## The Attempt at a Solution

Started with

[tex]\nabla^2\psi+\frac{2m}{\hbar^2}(E-V)\psi=0[/tex] Only one direction, and no potential:

[tex]\frac{d^2\psi}{dx^2}+\frac{2m}{\hbar^2}E\psi=0[/tex]

Letting [tex]\alpha=\sqrt{\frac{2m}{\hbar^2}E}[/tex]

[tex]\therefore\psi(x)=Ae^{i\alpha x}+Be^{-i\alpha x}[/tex]

Boundary Conditions:

[tex]\psi(0)=0=A+B\rightarrow A=-B[/tex]

[tex]\psi(L)=0=Ae^{i\alpha L}+Be^{-i\alpha L}=A(e^{i\alpha L}-e^{-i\alpha L})[/tex]From the identity:[tex]sin(\theta)=\frac{1}{2i}(e^{i\theta}-e^{-i\theta})[/tex]

[tex]\therefore 0=A2isin(\alpha L)\rightarrow \alpha L=n\pi\rightarrow \alpha=\frac{n\pi}{L}[/tex]

Putting alphas together

[tex]\frac{n\pi}{L}=\sqrt{\frac{2m}{\hbar^2}E}[/tex]

[tex]\therefore E(L)=\frac{n^2\pi^2\hbar^2}{2mL^2}[/tex][tex]n=1,2,3...[/tex]

These are the constants I am using for the final calculation:[tex]n=1[/tex][tex]\hbar=6.582(10^{-16})eVs[/tex][tex]m=9.11(10^{-31})Kg[/tex][tex]L=2(10^{-10})m[/tex]

I get 2.34675(10^20)eV when it should be 9.39eV.