1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Electropositivity - 2nd opinion needed

  1. Sep 12, 2015 #1


    User Avatar
    Gold Member

    1. The problem statement, all variables and given/known data

    I have a significant problem with the following excerpt from a general chemistry text:

    Note that ON stands for oxidation number (state). The excerpt is with regard to polyatomic anions - specifically, chloride ion and its related polyatomic anions.

    >It now follows that as oxygen-atom content increases by one, ON for the atom of variable ON increases by two because each added O has an ON of -2 and O is more EN than the atom of variable ON - thus, bonding O to this atom makes the atom more electropositive.

    2. Relevant equations

    *If* electropositivity is defined as the ability to stabilize positive charge, how does a highly partially positive central chlorine atom have this ability? *How can EP increase?*


    *If* electropositivity is more *formally* defined as the ability for an atom to give up electrons within a covalent framework (note that this is the converse of the definition of electronegativity), how exactly does a highly oxidized chlorine atom, such as the chlorine atom in the *perchloric ion*, have the ability to give up any more electrons? It already has *no* valence electrons to give up if we stick with an ionic model to assign oxidation states!


    *If* we look at this intuitively, and agree that more electropositive elements are more likely to bear positive charges - i.e. sodium (Na) is highly electropositive and it is very easy for Na to be stripped of its one electron to become isoelectronic with a noble gas - then why would chlorine become _more_ electropositive as it is further oxidized?

    **If we consider the successive ionization energies of chlorine, they become more and more massive!** So how in the world would chlorine be more electropositive (willing to give up electrons within a covalent framework) as it is further oxidized?

    (I do recognize that ionization energy of an electron is not a measure of electronegativity but still it is highly correlated with EN).

    3. The attempt at a solution

    My professor, respectfully, didn't offer much a defense. He said something about how positive charge doesn't exist because it's the lack of valence electrons rather than the presence of something material. This, to me, is sidestepping the argument.

    He also asked me which would be more likely to bear a positive charge - Cl or O? Obviously Cl; it has electrons way further from the nucleus than oxygen, so of course Cl would more easily be stripped of an electron than O. However, this again, I believe, is a mistake, because we _cannot_ consider electronegativities of elements and expect them to hold within ions and molecules. Carbon, for example, isn't very electronegative at all. But no one doubts the electron-withdrawing powers of a carbonyl carbon, or better yet, the electron-stabilizing powers of a ... **CARBOCATION**.

    Further, last semester, I distinctly remember correcting him with regard to this electronegativity business; he said that a more negative ion would be _more electronegative_. I had to correct that statement; a _more_ negative ion would be _less_ able to stabilize valence electron density and _less_ able to attract valence electrons if bound within a covalent framework, so the correct term would be instead _more electropositive_.

    **Does anyone here agree with me?** Sometimes I feel that it's not the argument that matters as much as your tenacity and ability to present the argument. I lacked both tenacity and presentation skills when presenting the above argument.

    I came close to telling him that his entire take of electronegativity was fundamentally flawed when I told him that "I don't associate a positive charge with electropositivity and a negative charge with electronegativity" but that was met with nothing to the contrary (which would have been welcome!) - because no, positive charge has nothing to do with electropositivity; in fact, it suggests the opposite of electropositivity!

    Your opinions please.
  2. jcsd
  3. Oct 2, 2015 #2


    User Avatar
    Gold Member

Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted

Similar Threads - Electropositivity opinion needed Date
How to calculate weight needed for a concentration Nov 9, 2017
Ur opinion on organic chem Aug 1, 2007