Electrostatic interaction energy between a charge rod and ring.

Click For Summary
SUMMARY

The discussion focuses on calculating the electrostatic interaction energy between a charged rod and a charged ring. The rod, with a length of l and a total charge Q, has a linear charge density that varies with distance from its bottom end. The ring, uniformly charged with total charge q_0, is positioned perpendicular to the rod. The electric fields of both the rod and the ring are derived using the equations for electric field and potential energy, leading to the expression for the interaction energy, which requires integration over all space.

PREREQUISITES
  • Understanding of electrostatics, specifically electric field calculations.
  • Familiarity with calculus, particularly integration techniques.
  • Knowledge of linear charge density and its implications in electric field calculations.
  • Proficiency in vector calculus, especially in dealing with vector fields in three dimensions.
NEXT STEPS
  • Study the derivation of electric fields for continuous charge distributions, focusing on linear charge density.
  • Learn about the method of integrating electric fields over infinite regions to find interaction energies.
  • Explore the concept of potential energy in electrostatics, particularly in systems with multiple charge distributions.
  • Investigate the implications of symmetry in electric field calculations, especially in cylindrical and spherical coordinates.
USEFUL FOR

Students and professionals in physics, particularly those specializing in electromagnetism, as well as researchers working on electrostatic interactions in charged systems.

Wavefunction
Messages
99
Reaction score
4

Homework Statement



Thin rod of the length l is placed with one of its ends placed at the center Oof the
thin ring of radius R as shown, perpendicular to the plane of the ring. Rod is
charged with total charge Q that is distributed along the rod’s length with the
linear charge density linearly proportional to the distance from the bottom end of
the rod. Ring is charged uniformly with total charge q_0. Find the electrostatic
energy of interaction between the rod and the ring.

Homework Equations



$$|d\vec{E}|=\frac{dq}{4\pi\varepsilon_0r^2}$$

$$W=\frac{\varepsilon_0}{2}\int_{\text{all space}}|\vec{E}|^2d\tau$$

The Attempt at a Solution



Okay so first the rod's electric field: $$\lambda=\alpha z$$,$$dq=\lambda dz$$

$$d\vec{E}=dE_x\hat{x}+dE_z\hat{z}\rightarrow \int d\vec{E} = E_x\hat{x}+E_z\hat{z}$$

The x-component of the rod's field;

$$dE_x = |d\vec{E}|\cos(\theta)=|d\vec{E}|\frac{R}{\sqrt{z^2+R^2}}$$

$$E_x = \int\frac{dq}{4\pi\varepsilon_0}\frac{R}{(z^2+R^2)^\frac{3}{2}}$$

$$E_x = \frac{\alpha R}{4\pi\varepsilon_0}\int_{z=0}^{l}\frac{zdz}{(z^2+R^2)^\frac{3}{2}}$$

$$E_x = \frac{\alpha R}{4\pi\varepsilon_0}\left[-\frac{1}{z^2+R^2}\right]_{z=0}^{l}$$

$$\underline{E_x=\frac{\alpha}{4\pi\varepsilon_0}\left[1-\frac{R}{\sqrt{l^2+R^2}}\right]}$$

The z-component of the rod's field;

$$dE_z=|d\vec{E}|\cos(\theta) = |d\vec{E}|\frac{z}{\sqrt{z^2+R^2}}$$

$$E_z= \int\frac{dq}{4\pi\varepsilon_0}\frac{z}{(z^2+R^2)^\frac{3}{2}}$$

$$E_z =
\frac{\alpha}{4\pi\varepsilon_0}\int_{z=0}^{l}\frac{z^2dz}{(z^2+R^2)^\frac{3}{2}}$$

$$E_z = \frac{\alpha}{4\pi\varepsilon_0}\left[\ln(\sqrt{R^2+z^2}+z)-\frac{z}{\sqrt{R^2+z^2}}\right]_{z=0}^{l}$$

$$\underline{E_z = \frac{\alpha}{4\pi\varepsilon_0}\left[\ln(\frac{\sqrt{R^2+l^2}+l}{R})-\frac{l}{\sqrt{R^2+l^2}}\right]}$$

So the rod's total field is then:

$$\boxed{\vec{E}_{\text{rod}}=\frac{\alpha}{4\pi\varepsilon_0}\left[1-\frac{R}{\sqrt{l^2+R^2}}\right]\hat{x}+ \frac{\alpha}{4\pi\varepsilon_0}\left[\ln(\frac{\sqrt{R^2+l^2}+l}{R})-\frac{l}{\sqrt{R^2+l^2}}\right]\hat{z}}$$

Now for the ring's field:

by symmetry I know the ring will only have a "z" component. Also in this case the linear charge density is uniform.

$$dq=\lambda dL=\lambda R d\beta$$

$$\beta=\frac{\pi}{2}-\theta$$

$$d\vec{E}=dE_z\hat{z}\rightarrow \int d\vec{E} =E_z\hat{z}$$

$$dE_z = |d\vec{E}|\cos(\beta) = |d\vec{E}|\cos(\frac{\pi}{2}-\theta) = |d\vec{E}|\sin(\theta)$$

$$E_z = \int\frac{dq}{4\pi\varepsilon_0}\frac{z}{(z^2+R^2)^\frac{3}{2}}$$

$$E_z = \frac{\lambda z R}{4\pi\varepsilon_0(z^2+R^2)^{\frac{3}{2}}}\int_{\beta=0}^{2\pi}d\beta = \frac{\lambda z}{2\varepsilon_0(z^2+R^2)^{\frac{3}{2}}}$$

So

$$\boxed{\vec{E}_{\text{ring}}=\frac{\lambda z R}{2\varepsilon_0(z^2+R^2)^\frac{3}{2}}\hat{z}} $$

Okay so now assuming I haven't made any grave errors in calculating my electric fields I'll add them together and square the resulting field.

$$\vec{E}_T=\vec{E}_{\text{rod}}+\vec{E}_{\text{ring}}$$

$$|\vec{E}_T|^2=|\vec{E}_{\text{rod}}|^2+|\vec{E}_{\text{ring}}|^2
+2\underbrace{\vec{E}_{\text{rod}}\cdot\vec{E}_{\text{ring}}}$$

Now I think the term that I have underbraced corresponds to the interaction of the electric fields of the two charge distributions so now in order to find the interaction energy of the two objects I need to calculate the following:

$$W_{\text{interaction}}=\varepsilon_0\int_{\text{all space}}\vec{E}_{\text{rod}}\cdot\vec{E}_{\text{ring}}d\tau$$

$$\vec{E}_{\text{rod}}\cdot\vec{E}_{\text{ring}} = \left[\frac{\alpha}{4\pi\varepsilon_0}\left[1-\frac{R}{\sqrt{l^2+R^2}}\right]\hat{x}+ \frac{\alpha}{4\pi\varepsilon_0}\left[\ln(\frac{\sqrt{R^2+l^2}+l}{R})-\frac{l}{\sqrt{R^2+l^2}}\right]\hat{z}\right]\cdot\left[0\hat{x}+\frac{\lambda z R}{2\varepsilon_0(z^2+R^2)^\frac{3}{2}}\hat{z}\right]$$

$$\varepsilon_0\int_{\text{all space}}\frac{\alpha}{4\pi\varepsilon_0}\left[\ln(\frac{\sqrt{R^2+l^2}+l}{R})-\frac{l}{\sqrt{R^2+l^2}}\right]\frac{\lambda z R}{2\varepsilon_0(z^2+R^2)^\frac{3}{2}}d\tau$$

So this is where I'm stuck and I'm not even completely sure the field for my rod is correct. If I integrate over an infinite cylinder I get answer of 0 since -\infty<z<\infty and \frac{z}{(z^2+R^2)^\frac{3}{2}} is an odd function.
 
Physics news on Phys.org
Wavefunction said:

Homework Statement



Thin rod of the length l is placed with one of its ends placed at the center Oof the
thin ring of radius R as shown, perpendicular to the plane of the ring. Rod is
charged with total charge Q that is distributed along the rod’s length with the
linear charge density linearly proportional to the distance from the bottom end of
the rod. Ring is charged uniformly with total charge q_0. Find the electrostatic
energy of interaction between the rod and the ring.

Homework Equations



$$|d\vec{E}|=\frac{dq}{4\pi\varepsilon_0r^2}$$

$$W=\frac{\varepsilon_0}{2}\int_{\text{all space}}|\vec{E}|^2d\tau$$

The Attempt at a Solution



Okay so first the rod's electric field: $$\lambda=\alpha z$$,$$dq=\lambda dz$$

$$d\vec{E}=dE_x\hat{x}+dE_z\hat{z}\rightarrow \int d\vec{E} = E_x\hat{x}+E_z\hat{z}$$

The x-component of the rod's field;

$$dE_x = |d\vec{E}|\cos(\theta)=|d\vec{E}|\frac{R}{\sqrt{z^2+R^2}}$$

$$E_x = \int\frac{dq}{4\pi\varepsilon_0}\frac{R}{(z^2+R^2)^\frac{3}{2}}$$

$$E_x = \frac{\alpha R}{4\pi\varepsilon_0}\int_{z=0}^{l}\frac{zdz}{(z^2+R^2)^\frac{3}{2}}$$

$$E_x = \frac{\alpha R}{4\pi\varepsilon_0}\left[-\frac{1}{z^2+R^2}\right]_{z=0}^{l}$$

$$\underline{E_x=\frac{\alpha}{4\pi\varepsilon_0}\left[1-\frac{R}{\sqrt{l^2+R^2}}\right]}$$

The z-component of the rod's field;

$$dE_z=|d\vec{E}|\cos(\theta) = |d\vec{E}|\frac{z}{\sqrt{z^2+R^2}}$$

$$E_z= \int\frac{dq}{4\pi\varepsilon_0}\frac{z}{(z^2+R^2)^\frac{3}{2}}$$

$$E_z =
\frac{\alpha}{4\pi\varepsilon_0}\int_{z=0}^{l}\frac{z^2dz}{(z^2+R^2)^\frac{3}{2}}$$

$$E_z = \frac{\alpha}{4\pi\varepsilon_0}\left[\ln(\sqrt{R^2+z^2}+z)-\frac{z}{\sqrt{R^2+z^2}}\right]_{z=0}^{l}$$

$$\underline{E_z = \frac{\alpha}{4\pi\varepsilon_0}\left[\ln(\frac{\sqrt{R^2+l^2}+l}{R})-\frac{l}{\sqrt{R^2+l^2}}\right]}$$

So the rod's total field is then:

$$\boxed{\vec{E}_{\text{rod}}=\frac{\alpha}{4\pi\varepsilon_0}\left[1-\frac{R}{\sqrt{l^2+R^2}}\right]\hat{x}+ \frac{\alpha}{4\pi\varepsilon_0}\left[\ln(\frac{\sqrt{R^2+l^2}+l}{R})-\frac{l}{\sqrt{R^2+l^2}}\right]\hat{z}}$$

Now for the ring's field:

by symmetry I know the ring will only have a "z" component. Also in this case the linear charge density is uniform.

$$dq=\lambda dL=\lambda R d\beta$$

$$\beta=\frac{\pi}{2}-\theta$$

$$d\vec{E}=dE_z\hat{z}\rightarrow \int d\vec{E} =E_z\hat{z}$$

$$dE_z = |d\vec{E}|\cos(\beta) = |d\vec{E}|\cos(\frac{\pi}{2}-\theta) = |d\vec{E}|\sin(\theta)$$

$$E_z = \int\frac{dq}{4\pi\varepsilon_0}\frac{z}{(z^2+R^2)^\frac{3}{2}}$$

$$E_z = \frac{\lambda z R}{4\pi\varepsilon_0(z^2+R^2)^{\frac{3}{2}}}\int_{\beta=0}^{2\pi}d\beta = \frac{\lambda z}{2\varepsilon_0(z^2+R^2)^{\frac{3}{2}}}$$

So

$$\boxed{\vec{E}_{\text{ring}}=\frac{\lambda z R}{2\varepsilon_0(z^2+R^2)^\frac{3}{2}}\hat{z}} $$

Okay so now assuming I haven't made any grave errors in calculating my electric fields I'll add them together and square the resulting field.

$$\vec{E}_T=\vec{E}_{\text{rod}}+\vec{E}_{\text{ring}}$$

$$|\vec{E}_T|^2=|\vec{E}_{\text{rod}}|^2+|\vec{E}_{\text{ring}}|^2
+2\underbrace{\vec{E}_{\text{rod}}\cdot\vec{E}_{\text{ring}}}$$

Now I think the term that I have underbraced corresponds to the interaction of the electric fields of the two charge distributions so now in order to find the interaction energy of the two objects I need to calculate the following:

$$W_{\text{interaction}}=\varepsilon_0\int_{\text{all space}}\vec{E}_{\text{rod}}\cdot\vec{E}_{\text{ring}}d\tau$$

$$\vec{E}_{\text{rod}}\cdot\vec{E}_{\text{ring}} = \left[\frac{\alpha}{4\pi\varepsilon_0}\left[1-\frac{R}{\sqrt{l^2+R^2}}\right]\hat{x}+ \frac{\alpha}{4\pi\varepsilon_0}\left[\ln(\frac{\sqrt{R^2+l^2}+l}{R})-\frac{l}{\sqrt{R^2+l^2}}\right]\hat{z}\right]\cdot\left[0\hat{x}+\frac{\lambda z R}{2\varepsilon_0(z^2+R^2)^\frac{3}{2}}\hat{z}\right]$$

$$\varepsilon_0\int_{\text{all space}}\frac{\alpha}{4\pi\varepsilon_0}\left[\ln(\frac{\sqrt{R^2+l^2}+l}{R})-\frac{l}{\sqrt{R^2+l^2}}\right]\frac{\lambda z R}{2\varepsilon_0(z^2+R^2)^\frac{3}{2}}d\tau$$

So this is where I'm stuck and I'm not even completely sure the field for my rod is correct. If I integrate over an infinite cylinder I get answer of 0 since -\infty<z<\infty and \frac{z}{(z^2+R^2)^\frac{3}{2}} is an odd function.

Actually I think I figured out my problem: I need to calculate the electric fields for all space and not just where the individual objects are. Hopefully that will resolve my issue.
 

Similar threads

  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 13 ·
Replies
13
Views
5K
Replies
29
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
17
Views
4K
  • · Replies 5 ·
Replies
5
Views
725
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K