Electrostatic interaction energy between a charge rod and ring.

In summary, the problem involves finding the electrostatic energy of interaction between a thin rod and a thin ring, both charged with different amounts of charge. The rod's electric field is calculated using linear charge density and the ring's electric field is calculated using symmetry. The total electric field is then squared and the term representing the interaction energy is integrated over all space. A mistake in not considering the electric fields for all space may have led to incorrect calculations.
  • #1
Wavefunction
99
4

Homework Statement



Thin rod of the length [itex]l[/itex] is placed with one of its ends placed at the center [itex]O[/itex]of the
thin ring of radius [itex]R[/itex] as shown, perpendicular to the plane of the ring. Rod is
charged with total charge [itex]Q[/itex] that is distributed along the rod’s length with the
linear charge density linearly proportional to the distance from the bottom end of
the rod. Ring is charged uniformly with total charge [itex]q_0[/itex]. Find the electrostatic
energy of interaction between the rod and the ring.

Homework Equations



$$|d\vec{E}|=\frac{dq}{4\pi\varepsilon_0r^2}$$

$$W=\frac{\varepsilon_0}{2}\int_{\text{all space}}|\vec{E}|^2d\tau$$

The Attempt at a Solution



Okay so first the rod's electric field: $$\lambda=\alpha z$$,$$dq=\lambda dz$$

$$d\vec{E}=dE_x\hat{x}+dE_z\hat{z}\rightarrow \int d\vec{E} = E_x\hat{x}+E_z\hat{z}$$

The x-component of the rod's field;

$$dE_x = |d\vec{E}|\cos(\theta)=|d\vec{E}|\frac{R}{\sqrt{z^2+R^2}}$$

$$E_x = \int\frac{dq}{4\pi\varepsilon_0}\frac{R}{(z^2+R^2)^\frac{3}{2}}$$

$$E_x = \frac{\alpha R}{4\pi\varepsilon_0}\int_{z=0}^{l}\frac{zdz}{(z^2+R^2)^\frac{3}{2}}$$

$$E_x = \frac{\alpha R}{4\pi\varepsilon_0}\left[-\frac{1}{z^2+R^2}\right]_{z=0}^{l}$$

$$\underline{E_x=\frac{\alpha}{4\pi\varepsilon_0}\left[1-\frac{R}{\sqrt{l^2+R^2}}\right]}$$

The z-component of the rod's field;

$$dE_z=|d\vec{E}|\cos(\theta) = |d\vec{E}|\frac{z}{\sqrt{z^2+R^2}}$$

$$E_z= \int\frac{dq}{4\pi\varepsilon_0}\frac{z}{(z^2+R^2)^\frac{3}{2}}$$

$$E_z =
\frac{\alpha}{4\pi\varepsilon_0}\int_{z=0}^{l}\frac{z^2dz}{(z^2+R^2)^\frac{3}{2}}$$

$$E_z = \frac{\alpha}{4\pi\varepsilon_0}\left[\ln(\sqrt{R^2+z^2}+z)-\frac{z}{\sqrt{R^2+z^2}}\right]_{z=0}^{l}$$

$$\underline{E_z = \frac{\alpha}{4\pi\varepsilon_0}\left[\ln(\frac{\sqrt{R^2+l^2}+l}{R})-\frac{l}{\sqrt{R^2+l^2}}\right]}$$

So the rod's total field is then:

$$\boxed{\vec{E}_{\text{rod}}=\frac{\alpha}{4\pi\varepsilon_0}\left[1-\frac{R}{\sqrt{l^2+R^2}}\right]\hat{x}+ \frac{\alpha}{4\pi\varepsilon_0}\left[\ln(\frac{\sqrt{R^2+l^2}+l}{R})-\frac{l}{\sqrt{R^2+l^2}}\right]\hat{z}}$$

Now for the ring's field:

by symmetry I know the ring will only have a "z" component. Also in this case the linear charge density is uniform.

$$dq=\lambda dL=\lambda R d\beta$$

$$\beta=\frac{\pi}{2}-\theta$$

$$d\vec{E}=dE_z\hat{z}\rightarrow \int d\vec{E} =E_z\hat{z}$$

$$dE_z = |d\vec{E}|\cos(\beta) = |d\vec{E}|\cos(\frac{\pi}{2}-\theta) = |d\vec{E}|\sin(\theta)$$

$$E_z = \int\frac{dq}{4\pi\varepsilon_0}\frac{z}{(z^2+R^2)^\frac{3}{2}}$$

$$E_z = \frac{\lambda z R}{4\pi\varepsilon_0(z^2+R^2)^{\frac{3}{2}}}\int_{\beta=0}^{2\pi}d\beta = \frac{\lambda z}{2\varepsilon_0(z^2+R^2)^{\frac{3}{2}}}$$

So

$$\boxed{\vec{E}_{\text{ring}}=\frac{\lambda z R}{2\varepsilon_0(z^2+R^2)^\frac{3}{2}}\hat{z}} $$

Okay so now assuming I haven't made any grave errors in calculating my electric fields I'll add them together and square the resulting field.

$$\vec{E}_T=\vec{E}_{\text{rod}}+\vec{E}_{\text{ring}}$$

$$|\vec{E}_T|^2=|\vec{E}_{\text{rod}}|^2+|\vec{E}_{\text{ring}}|^2
+2\underbrace{\vec{E}_{\text{rod}}\cdot\vec{E}_{\text{ring}}}$$

Now I think the term that I have underbraced corresponds to the interaction of the electric fields of the two charge distributions so now in order to find the interaction energy of the two objects I need to calculate the following:

$$W_{\text{interaction}}=\varepsilon_0\int_{\text{all space}}\vec{E}_{\text{rod}}\cdot\vec{E}_{\text{ring}}d\tau$$

$$\vec{E}_{\text{rod}}\cdot\vec{E}_{\text{ring}} = \left[\frac{\alpha}{4\pi\varepsilon_0}\left[1-\frac{R}{\sqrt{l^2+R^2}}\right]\hat{x}+ \frac{\alpha}{4\pi\varepsilon_0}\left[\ln(\frac{\sqrt{R^2+l^2}+l}{R})-\frac{l}{\sqrt{R^2+l^2}}\right]\hat{z}\right]\cdot\left[0\hat{x}+\frac{\lambda z R}{2\varepsilon_0(z^2+R^2)^\frac{3}{2}}\hat{z}\right]$$

$$\varepsilon_0\int_{\text{all space}}\frac{\alpha}{4\pi\varepsilon_0}\left[\ln(\frac{\sqrt{R^2+l^2}+l}{R})-\frac{l}{\sqrt{R^2+l^2}}\right]\frac{\lambda z R}{2\varepsilon_0(z^2+R^2)^\frac{3}{2}}d\tau$$

So this is where I'm stuck and I'm not even completely sure the field for my rod is correct. If I integrate over an infinite cylinder I get answer of 0 since [itex]-\infty<z<\infty[/itex] and [itex]\frac{z}{(z^2+R^2)^\frac{3}{2}}[/itex] is an odd function.
 
Physics news on Phys.org
  • #2
Wavefunction said:

Homework Statement



Thin rod of the length [itex]l[/itex] is placed with one of its ends placed at the center [itex]O[/itex]of the
thin ring of radius [itex]R[/itex] as shown, perpendicular to the plane of the ring. Rod is
charged with total charge [itex]Q[/itex] that is distributed along the rod’s length with the
linear charge density linearly proportional to the distance from the bottom end of
the rod. Ring is charged uniformly with total charge [itex]q_0[/itex]. Find the electrostatic
energy of interaction between the rod and the ring.

Homework Equations



$$|d\vec{E}|=\frac{dq}{4\pi\varepsilon_0r^2}$$

$$W=\frac{\varepsilon_0}{2}\int_{\text{all space}}|\vec{E}|^2d\tau$$

The Attempt at a Solution



Okay so first the rod's electric field: $$\lambda=\alpha z$$,$$dq=\lambda dz$$

$$d\vec{E}=dE_x\hat{x}+dE_z\hat{z}\rightarrow \int d\vec{E} = E_x\hat{x}+E_z\hat{z}$$

The x-component of the rod's field;

$$dE_x = |d\vec{E}|\cos(\theta)=|d\vec{E}|\frac{R}{\sqrt{z^2+R^2}}$$

$$E_x = \int\frac{dq}{4\pi\varepsilon_0}\frac{R}{(z^2+R^2)^\frac{3}{2}}$$

$$E_x = \frac{\alpha R}{4\pi\varepsilon_0}\int_{z=0}^{l}\frac{zdz}{(z^2+R^2)^\frac{3}{2}}$$

$$E_x = \frac{\alpha R}{4\pi\varepsilon_0}\left[-\frac{1}{z^2+R^2}\right]_{z=0}^{l}$$

$$\underline{E_x=\frac{\alpha}{4\pi\varepsilon_0}\left[1-\frac{R}{\sqrt{l^2+R^2}}\right]}$$

The z-component of the rod's field;

$$dE_z=|d\vec{E}|\cos(\theta) = |d\vec{E}|\frac{z}{\sqrt{z^2+R^2}}$$

$$E_z= \int\frac{dq}{4\pi\varepsilon_0}\frac{z}{(z^2+R^2)^\frac{3}{2}}$$

$$E_z =
\frac{\alpha}{4\pi\varepsilon_0}\int_{z=0}^{l}\frac{z^2dz}{(z^2+R^2)^\frac{3}{2}}$$

$$E_z = \frac{\alpha}{4\pi\varepsilon_0}\left[\ln(\sqrt{R^2+z^2}+z)-\frac{z}{\sqrt{R^2+z^2}}\right]_{z=0}^{l}$$

$$\underline{E_z = \frac{\alpha}{4\pi\varepsilon_0}\left[\ln(\frac{\sqrt{R^2+l^2}+l}{R})-\frac{l}{\sqrt{R^2+l^2}}\right]}$$

So the rod's total field is then:

$$\boxed{\vec{E}_{\text{rod}}=\frac{\alpha}{4\pi\varepsilon_0}\left[1-\frac{R}{\sqrt{l^2+R^2}}\right]\hat{x}+ \frac{\alpha}{4\pi\varepsilon_0}\left[\ln(\frac{\sqrt{R^2+l^2}+l}{R})-\frac{l}{\sqrt{R^2+l^2}}\right]\hat{z}}$$

Now for the ring's field:

by symmetry I know the ring will only have a "z" component. Also in this case the linear charge density is uniform.

$$dq=\lambda dL=\lambda R d\beta$$

$$\beta=\frac{\pi}{2}-\theta$$

$$d\vec{E}=dE_z\hat{z}\rightarrow \int d\vec{E} =E_z\hat{z}$$

$$dE_z = |d\vec{E}|\cos(\beta) = |d\vec{E}|\cos(\frac{\pi}{2}-\theta) = |d\vec{E}|\sin(\theta)$$

$$E_z = \int\frac{dq}{4\pi\varepsilon_0}\frac{z}{(z^2+R^2)^\frac{3}{2}}$$

$$E_z = \frac{\lambda z R}{4\pi\varepsilon_0(z^2+R^2)^{\frac{3}{2}}}\int_{\beta=0}^{2\pi}d\beta = \frac{\lambda z}{2\varepsilon_0(z^2+R^2)^{\frac{3}{2}}}$$

So

$$\boxed{\vec{E}_{\text{ring}}=\frac{\lambda z R}{2\varepsilon_0(z^2+R^2)^\frac{3}{2}}\hat{z}} $$

Okay so now assuming I haven't made any grave errors in calculating my electric fields I'll add them together and square the resulting field.

$$\vec{E}_T=\vec{E}_{\text{rod}}+\vec{E}_{\text{ring}}$$

$$|\vec{E}_T|^2=|\vec{E}_{\text{rod}}|^2+|\vec{E}_{\text{ring}}|^2
+2\underbrace{\vec{E}_{\text{rod}}\cdot\vec{E}_{\text{ring}}}$$

Now I think the term that I have underbraced corresponds to the interaction of the electric fields of the two charge distributions so now in order to find the interaction energy of the two objects I need to calculate the following:

$$W_{\text{interaction}}=\varepsilon_0\int_{\text{all space}}\vec{E}_{\text{rod}}\cdot\vec{E}_{\text{ring}}d\tau$$

$$\vec{E}_{\text{rod}}\cdot\vec{E}_{\text{ring}} = \left[\frac{\alpha}{4\pi\varepsilon_0}\left[1-\frac{R}{\sqrt{l^2+R^2}}\right]\hat{x}+ \frac{\alpha}{4\pi\varepsilon_0}\left[\ln(\frac{\sqrt{R^2+l^2}+l}{R})-\frac{l}{\sqrt{R^2+l^2}}\right]\hat{z}\right]\cdot\left[0\hat{x}+\frac{\lambda z R}{2\varepsilon_0(z^2+R^2)^\frac{3}{2}}\hat{z}\right]$$

$$\varepsilon_0\int_{\text{all space}}\frac{\alpha}{4\pi\varepsilon_0}\left[\ln(\frac{\sqrt{R^2+l^2}+l}{R})-\frac{l}{\sqrt{R^2+l^2}}\right]\frac{\lambda z R}{2\varepsilon_0(z^2+R^2)^\frac{3}{2}}d\tau$$

So this is where I'm stuck and I'm not even completely sure the field for my rod is correct. If I integrate over an infinite cylinder I get answer of 0 since [itex]-\infty<z<\infty[/itex] and [itex]\frac{z}{(z^2+R^2)^\frac{3}{2}}[/itex] is an odd function.

Actually I think I figured out my problem: I need to calculate the electric fields for all space and not just where the individual objects are. Hopefully that will resolve my issue.
 

1. What is electrostatic interaction energy?

Electrostatic interaction energy is the potential energy that results from the attraction or repulsion between two charged particles.

2. How is the electrostatic interaction energy calculated?

The electrostatic interaction energy between a charge rod and ring can be calculated using the Coulomb's law equation: E = k * (q1 * q2) / r, where k is the Coulomb's constant, q1 and q2 are the charges on the rod and ring respectively, and r is the distance between them.

3. What factors affect the electrostatic interaction energy?

The electrostatic interaction energy is affected by the magnitude of the charges, the distance between them, and the dielectric constant of the medium in which they are located.

4. How does the orientation of the rod and ring affect the electrostatic interaction energy?

The electrostatic interaction energy is dependent on the orientation of the rod and ring. When the charges on the rod and ring are aligned, the energy is at its maximum. When the charges are opposite in direction, the energy is at its minimum.

5. What is the significance of studying electrostatic interaction energy?

Understanding electrostatic interaction energy is important in various fields such as chemistry, physics, and engineering. It helps in predicting and explaining the behavior of charged particles and their interactions, which is crucial in understanding many natural phenomena and designing various technological applications.

Similar threads

  • Advanced Physics Homework Help
Replies
19
Views
817
  • Advanced Physics Homework Help
Replies
29
Views
129
  • Advanced Physics Homework Help
Replies
13
Views
2K
  • Advanced Physics Homework Help
Replies
8
Views
1K
  • Advanced Physics Homework Help
Replies
7
Views
1K
  • Advanced Physics Homework Help
Replies
12
Views
3K
  • Advanced Physics Homework Help
Replies
1
Views
410
  • Advanced Physics Homework Help
Replies
3
Views
383
  • Advanced Physics Homework Help
Replies
17
Views
2K
Replies
2
Views
707
Back
Top