- #1
- 11
- 0
Two concentric metal spheres have radii [tex]r_1[/tex] = 10 cm and [tex]r_2[/tex] = 10.5 cm. The inner sphere has a charge of Q = 5 nC spread uniformly on its surface, and the outer sphere has charge -Q on its surface. (a) calculate the total energy stored in the electric field inside the spheres Hint: You can treat the spheres essentially as parallel flat slabs separated by 0.5 cm why?
[tex]\phi = 4\pi kQ[/tex]
U=qV/2
First of all, I don't know why treating the spheres as slabs will help, but since that's the hint, I'm looking for a way to do it. I can show with Gauss' Law that teh electric field inside the inner sphere is 0, so that kind of makes them like slabs. Is that enough justification and why?
[tex]\phi = 4\pi kQ[/tex]
U=qV/2
First of all, I don't know why treating the spheres as slabs will help, but since that's the hint, I'm looking for a way to do it. I can show with Gauss' Law that teh electric field inside the inner sphere is 0, so that kind of makes them like slabs. Is that enough justification and why?
Last edited: