MHB Elementary Algebraic Geometry: Dummit & Foote Ch.15, Ex.24 Coordinate Ring

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am trying to gain an understanding of the basics of elementary algebraic geometry and am reading Dummit and Foote Chapter 15: Commutative Rings and Algebraic Geometry ...

At present I am focused on Section 15.1 Noetherian Rings and Affine Algebraic Sets ... ...

I need help to get started on Exercise 24 of Section 15.1 ...Exercise 24 of Section 15.1 reads as follows:https://www.physicsforums.com/attachments/4763***NOTE***

I do not really fully understand the nature of a k-algebra ... so any help in making the notion of an algebra clearer will help ... as well as a significant start on the exercise ...Hope someone can help ...

Peter
 
Physics news on Phys.org
You should be able to do the first part of the exercise as I have already given hints in the other thread.

For the second part, I really don't see how you can do this without some machinery. $\mathcal{Z}(xy - z^2)$ looks like a cone in the affine $3$-space, if you try to draw it. You can try and you will convince yourself that the variety at $(0, 0, 0)$ is singular, while $\Bbb A^2$ is smooth everywhere. The formalization of this is that the Zariski tangent space of the variety at $(0, 0, 0)$ is a vector space of dimension $3$, whereas dimension of the variety is of dimension $2$. Thus, $\mathcal{Z}(xy - z^2)$ is not smooth, and hence cannot be isomorphic to $\Bbb A^2$.

EDIT : OK, figured out how to do this without fancy arguments. This one is tricky. Assume that $\mathcal{Z}(xy - z^2)$ is isomorphic to $\Bbb A^2$. Then the coordinate rings $k[x, y, z]/(xy - z^2)$ and $k[u, v]$ are isomorphic as affine $k$-algebras. This implies they must also be isomorphic as rings. But note that in $k[x, y, z]/(xy - z^2)$, $x, y, z$ are irreducible elements, but since $x \cdot y = z \cdot z$, it cannot be a P.I.D. But $k[u, v]$ is a P.I.D., contradiction.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
Replies
2
Views
2K
Replies
2
Views
2K
Replies
1
Views
1K