MHB Elementary Complex Number Problems

Click For Summary
The discussion focuses on solving elementary complex number problems, particularly finding magnitudes and arguments of complex numbers. Participants explore methods to calculate the magnitude of expressions like $|\frac{i(2+i)^3}{(1-i)^2}|$ without expanding the numerator, suggesting conversion to polar form. The argument of the complex number $-2\sqrt{3}-2i$ is debated, with some confusion regarding the correct angle, ultimately concluding that the argument should be $\frac{-5\pi}{6}$. Additionally, the argument of $-\frac{1}{2}$ is clarified, with the correct argument identified as $\pi$. The conversation highlights the importance of meticulous calculations and the use of tools like Wolfram|Alpha for verification.
nacho-man
Messages
166
Reaction score
0
1.
$|\frac{i(2+i)^3}{(1-i)^2}|$

Is there any way to complete this without expanding the numerator?2. what is the argument of $ -2\sqrt{3}-2i$
I got $r=4$

then
$\cos\theta_1 $ $= \frac{-2}{\sqrt{3}{4}}$ and $-2=4\sin\theta_2$
$\theta_1 = \pi - \frac{\pi}{6} = 5\frac{\pi}{6}$ and
$\theta_2 = \frac{-\pi}{6}$
so
Arg = $4cis(\frac{-\pi}{3})$ which is wrong according to my solutions and it should be $\frac{-5\pi}{6}$

where did i go wrong?


2. what is the method of finding the argument of -1/2.

so $z = -\frac{1}{2}$
and $r = \frac{1}{2}$

to solve for theta, i always get confused here.

i let
$-\frac{1}{2} = \frac{1}{2}\cos\theta_{1}$ and $-\frac{1}{2}=\frac{1}{2}\sin\theta_{2}$ and solve

usually my $\theta_{2}$ ends up being wrong due to some error i make in the range. What would I do from here, being as meticulous and thorough in my working as possible?
in this example, i made no mistake.
i will edit this section with a question i get wrong, of similar fashion.
Thanks.
 
Last edited:
Physics news on Phys.org
Re: elementary problems

nacho said:
2. what is the method of finding the argument of -1/2.

In my opinion the 'good definition' of $\displaystyle \text{arg}\ z$ is the following...

$\displaystyle \text{arg}\ z = \mathcal{Im} (\ln z)\ (1)$

On the basis of (1) is...

ln (- 1/2) - Wolfram|Alpha

$\displaystyle \text{arg}\ (- \frac{1}{2}) = \pi\ (2)$

Kind regards

$\chi$ $\sigma$
 
Re: elementary problems

how would i find the argument of
$(1-i)(-\sqrt{3} + i)$
I get $r = 2\sqrt{2}$

but when solving for theta i get stuck because it gives:

$ \frac{\sqrt{3}+1}{2\sqrt{2}} = \cos\theta$ which i cannot solve.
 
Re: elementary problems

nacho said:
how would i find the argument of
$(1-i)(-\sqrt{3} + i)$
I get $r = 2\sqrt{2}$

but when solving for theta i get stuck because it gives:

$ \frac{\sqrt{3}+1}{2\sqrt{2}} = \cos\theta$ which i cannot solve.

Also in this case 'Monster Wolfram' works excellently!...

ln [(1 - i)/(i - sqrt(3))] - Wolfram|Alpha

$\displaystyle \text{Im}\ (\ln \frac{1-i}{i - \sqrt{3}}) = \frac{11}{12}\ \pi\ (1)$

Kind regards

$\chi$ $\sigma$
 
we are not expected to solve these by hand?
 
nacho said:
1.
$|\frac{i(2+i)^3}{(1-i)^2}|$

Is there any way to complete this without expanding the numerator?

Yes, convert to polars.
 
nacho said:
1.
$|\frac{i(2+i)^3}{(1-i)^2}|$
Is there any way to complete this without expanding the numerator?

\left| {\frac{{i{{(2 + i)}^3}}}{{{{(1 - i)}^2}}}} \right| = \frac{{|i||2 + i{|^3}}}{{|1 - i{|^2}}}
 
Plato said:
\left| {\frac{{i{{(2 + i)}^3}}}{{{{(1 - i)}^2}}}} \right| = \frac{{|i||2 + i{|^3}}}{{|1 - i{|^2}}}

I just wasn't sure how to proceed with the $|(2+i)|^3$ term.
would i need expand the entire term or?
 
Re: elementary problems

chisigma said:
In my opinion the 'good definition' of $\displaystyle \text{arg}\ z$ is the following...

$\displaystyle \text{arg}\ z = \mathcal{Im} (\ln z)\ (1)$

On the basis of (1) is...

ln (- 1/2) - Wolfram|Alpha

$\displaystyle \text{arg}\ (- \frac{1}{2}) = \pi\ (2)$

Kind regards

$\chi$ $\sigma$

I think what is meant by argument is finding the angle $$\theta$$ of the complex number vector with the x-axis.
 
  • #10
nacho said:
I just wasn't sure how to proceed with the $|(2+i)|^3$ term.
would i need expand the entire term or?

$$|2+i|=\sqrt{5}$$ so $$|2+i|^3=\sqrt{5}^3$$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K