Hello,(adsbygoogle = window.adsbygoogle || []).push({});

I know this has already been asked (unfortunately without answer)... learning once again for an exam (quantum field theory) I can't figure out a feature of a very central quantity: the total energy of a vibrating string.

Let's start at the string (field) wave equation:

[tex] \frac{1}{c^2} \, \frac{\partial^2 \Phi(x,t)}{\partial t^2} = \frac{\partial^2 \Phi(x,t)}{\partial x^2} [/tex]

With proper boundary conditions you get a set of modes, for example

[tex] \Phi_r(x,t) = A_r(t) \, sin(\frac{r \pi x}{L}) [/tex]

and with that the general motion of the string:

[tex] \Phi(x,t) = \sum\limits_{r=1}^\infty A_r(t) \, sin(\frac{r \pi x}{L}) [/tex]

Now, my book confronts me with the total energy of the vibrating string, declaring it as "analogous to the discrete summation":

[tex]E = \int\limits_0^L \left[ \frac{1}{2} \rho {(\frac{\partial \Phi}{\partial t})}^2 + \frac{1}{2} \rho c^2 {(\frac{\partial \Phi}{\partial x})}^2 \right] \, dx , \,\,where\, the \, "discrete"\, case\, was \,\,\,\,\,\,E = \sum\limits_{r=1}^N \frac{1}{2} m \dot{q}_r ^2 + V(q_1, ..., q_N) [/tex]

I can't work this out. I understand that the first term is the kinetic energy, alright. But the second term I don't get.

The potential Energy / Length on the string is

[tex] E_{pot} / L = - \frac{1}{2 L} D \, \Phi ^2 = - \frac{1}{2} \omega ^2 \, \rho \, \Phi ^2 [/tex]

as far as I can see from classical mechanics ([tex] -D \, \Phi [/tex] is the force pulling the "mass element" backwards), but why the derivative [tex] {(\frac{\partial \Phi}{\partial x})} [/tex] insted of just [tex] \Phi [/tex] ?

Can somebody help me out? I already wasted too much time on this... I hate it when I don't understand stuff from years back that I just should know.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Energy of a vibrating string (continuous field)

**Physics Forums | Science Articles, Homework Help, Discussion**