B Energy-time uncertainty relation for a volume and macroscopic objects?

Aidyan
Messages
182
Reaction score
14
As I understand it, the energy-time uncertainty relation \triangle E \triangle t \geq \hbar /2 expresses a trade-off between the precision with which energy and time can be simultaneously measured. I understand that, unlike position and momentum, time is not an operator, so the relation is not a formal uncertainty between two observables. Instead, it reflects the idea that the shorter the duration \triangle t over which a quantum state exists, the more uncertain is its energy \triangle E. For example, it underlies the phenomenon of the broadening of spectral lines.
I'm wondering whether it can be applied to a volume of space, where the time interval is related to a length L divided to the speed of light c as: \triangle t=\frac{L}{c}. Then \triangle E \geq \frac{\hbar}{2 \triangle t}=\frac{\hbar c}{2 L}=\frac{\hbar c}{2 V^{1/3}}. If so, can this be applied to macroscopic objects occupying a volume V? Does this make sense? If not, why not?
 
Physics news on Phys.org
Aidyan said:
As I understand it, the energy-time uncertainty relation \triangle E \triangle t \geq \hbar /2 expresses a trade-off between the precision with which energy and time can be simultaneously measured.
It's nothing like that. Time is not an observable in QM; it's an independent variable, unrelated to the particle itself (unlike the position of the particle). In any case, Griffiths deals with this common misunderstanding in his Introduction to Quantum Mechanics. See section 3.5.3:

##\Delta t## in the energy-time uncertainty principle is not the standard deviation of a collection of time measurements. Roughly speaking, it's the time it takes the system to change substantially.

He then goes on to make this more precise.
 
  • Like
Likes Delta Prime
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top