Equal and opposite forces with electricity

  • Context: Graduate 
  • Thread starter Thread starter fragiggle
  • Start date Start date
  • Tags Tags
    Electricity Forces
Click For Summary
SUMMARY

The discussion centers on the relationship between electricity generation, recoil forces in electromagnetic (EM) railguns, and the balancing forces involved in capacitor discharge. It highlights that the work done by a generator to charge capacitors creates equal and opposite forces, particularly in the context of railgun operation. The conversation emphasizes the importance of understanding recoil forces, which can affect power supply components and projectile armatures. A key takeaway is that the energy dissipated by capacitors must equal the kinetic energy of the projectile, factoring in heat loss and forces on the rails.

PREREQUISITES
  • Understanding of electromagnetic principles and forces
  • Familiarity with capacitor discharge dynamics
  • Knowledge of railgun mechanics and design considerations
  • Basic grasp of energy conservation in electrical systems
NEXT STEPS
  • Research the equations governing recoil forces in electromagnetic systems
  • Study the principles of capacitor discharge and its effects on kinetic energy
  • Explore the design and operational principles of EM railguns
  • Learn about the relationship between electrical energy and mechanical forces in railgun applications
USEFUL FOR

Engineers, physicists, and students interested in electromagnetic systems, particularly those focused on railgun technology and energy transfer mechanisms in electrical applications.

fragiggle
Messages
1
Reaction score
0
I have a question concerning the generation of electricity and equal and opposite forces.
I've been having a hard time describing it. Sorry if I don't get my point across.
If I start off with using a generator to generate charge in capacitors, I have the equal and opposite forces being the work done by the generator and the charge in the capacitors. Then I take a system such as a rail gun where current is the direct cause of the forward momentum.
Then I had the question, if I have saved up work to balance an equal and opposite force with my charge in the capacitor. Wouldn't losing charge be the balancing factor in the recoil of a rail gun? but then I found this source and it states.

"Recoil forces in EM railguns appear wherever the
breech of the railgun is closed electromagnetically.
This means recoil forces may appear on power supply
leads, switches, or power supply components them-
selves. Careful attention is required on the part of
the railgun designer to control the location of the
recoil loading and provide means for sustaining the
loads. Careless design can result in undesirable
forces being applied to the projectile armature as
well. On the other hand a thorough understanding of
where and how recoil forces are generated can be used
to good advantage in some EM gun systems. In closing
we offer aspiring railgun designers one bit of advice
originally offered to HPG machine designers bys by Hr. B.
0. Lamme in 1906, 'You can't fool the flux.' " But now I am stuck with what is the balancing force of the discharge of the capacitors? Or if I removed the capacitors and had a powerful enough generator to fire a rail gun, what would be the balancing force of the generator? like I am putting force in and getting a projectile out. before it was the static force between the capacitors increasing.

I guess I'm stuck thinking that the energy dissipated by the capacitors would equal the kinetic energy of the projectile plus the heat lost and the force on the rails. then I just don't see any magnetic fields crossing current to cause any recoil.

Or does the projectile really just push back on the field and that pushing back is translated back into the system? does anyone know the equations for that if this is indeed what happens?
 
Physics news on Phys.org
You appear to be confusing energy and force descriptions.
To understand the 3rd law force pairs in electrical systems, you need to describe the effects purely in terms of electrical and other forces.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 61 ·
3
Replies
61
Views
5K
  • · Replies 3 ·
Replies
3
Views
532
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 20 ·
Replies
20
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K